

County of Orange/San Diego Region Priority Project Conceptual Water Quality Management Plan (C-WQMP)

Project Name:

Oak Grove

23432 VISTA DEL VERDE, COTO DE CAZA, CA 92679 APN: 804-261-12, 23, 24 Planning Application No. PA160056

Prepared for:

Oak Grove LLC and Silver-Bronze Corporation
One Upper Newport Plaza
Newport Beach, CA 92660

Prepared by:

Roy Roberson, P.E. #44160 Land Strategies, LLC 9241 Irvine Boulevard, Suite 100 Irvine, CA 92618-1695 (949) 580-3000, roy@land-strategies.us

1st Submittal Prepared: 4/7/2016 2nd Submittal Prepared: 10/28/2016 3rd Submittal Prepared: 3/16/2017 4th Submittal Prepared: 8/14/2017 5th Submittal Prepared 12/7/2017 6th Submittal Prepared 2/11/2019 7th Submittal Prepared 5-14-2020 8th Submittal Prepared 4-27-2021 (rev 8-23-2021) 9th Submittal Prepared 3/31/2022

Project Owner's Certification				
Planning Application No. (If applicable)	PA160056	Grading Permit No.	N/A	
Tract/Parcel Map and Lot(s) No.	Tract Map No. 17866	Building Permit No.	N/A	
Address of Project Site and APN (If no address, specify Tract/Parcel Map and Lot Numbers)			23432 Vista Del Verde, Coto de Caza, CA 92679 APN: 804-261-12, 23, 24	

This Conceptual Water Quality Management Plan (C-WQMP) has been prepared for Silver-Bronze Corporation by Land Strategies, LLC. The C-WQMP is intended to comply with the requirements of the County of Orange NPDES Stormwater Program requiring the preparation of the plan.

The undersigned, while it owns the subject property, is responsible for the implementation of the provisions of this plan , including the ongoing operation and maintenance of all best management practices (BMPs), and will ensure that this plan is amended as appropriate to reflect up-to-date conditions on the site consistent with the current Orange County Drainage Area Management Plan (DAMP) and the intent of the non-point source NPDES Permit for Waste Discharge Requirements for the County of Orange, Orange County Flood Control District and the incorporated Cities of Orange County within the San Diego Region. Once the undersigned transfers its interest in the property, its successors-in-interest shall bear the aforementioned responsibility to implement and amend the WQMP. An appropriate number of approved and signed copies of this document shall be available on the subject site in perpetuity.

Owner: Alaii	Owner: Alain O'Connor		
Title	Chairman and Executive Director		
Company	Silver-Bronze Corporation and Oak Grove LLC		
Address	One Upper Newport Plaza, Newport Beach CA 92660		
Email	AO@OakGrovecoto.com		
Telephone#	949-251-2011		
I understand my responsibility to implement the provisions of this WQMP including the ongoing operation and maintenance of the best management practices (BMPs) described herein.			
Owner Signature	Date 3/31/2021		

Preparer (Engineer): Roy Roberson				
Title	Managing Member	PE Registra	ation #	44160
Company	Land Strategies, LLC			<u> </u>
Address	9241 Irvine Boulevard, Suite 100			
Email	roy@land-strategies.us			No.
Telephone #	(949) 580-3000			
I hereby certify that this Conceptual Water Quality Management Plan is in compliance with, and meets the requirements set forth in, Order No. R9-2009-0002/NPDES No. CAS0108740, of the San Diego Regional Water Quality Control Board.				
Preparer \\ Signature	52		Date	03/31/2021
Place Stamp Here	PROFESSIONAL FUNCTION OF PROFESSION O			

Contents Page No. Permit(s) and Water Quality Conditions of Approval or Issuance.......... 5 **Section I** Project Description......6 Section II **Section III** Site Description11 Section IV Best Management Practices (BMPs)14 Inspection/Maintenance Responsibility for BMPs......25 Section V Section VI **Section VII** Educational Materials.......27 **Attachments** Attachment A.. BMP Fact Sheets and Educational Materials Attachment B.......WOMP Exhibit Attachment C....... HCOC Calculations Attachment D Operations & Maintenance

Section I Permit(s) and Water Quality Conditions of Approval or Issuance

Provide discretionary or grading/building permit information and water quality conditions of approval, or permit issuance, applied to the project. If conditions are unknown, please request applicable conditions from staff. *Refer to Section 2.1 in the Technical Guidance Document (TGD) available on the OC Planning website (www.ocplanning.net).*

Project Infomation				
Permit/Application No. (I. applicable)	PA 160056	Grading or Building Permit No. (If applicable)	N/A	
Address of Project Site (or Tract Map and Lot Numbe if no address) and APN	23432 Vista Del Verde, Coto de Caza, CA 92679 APN: 804-261-12, 23, 24			
Water	Quality Conditi	ons of Approval or Iss	suance	
or Issuance applied to		o be provided during the next submittal. Any conditions of approval oplicable to NPDES requirements for this project will become a part of his WQMP.		
Conceptual WQMP				
Was a Conceptual Water Quality Management Plan previously approved for this project?	No. This is the	No. This is the Conceptual WQMP for this Project.		

Section II Project Description

II.1 Project Description

Provide a detailed project description including:

- Project areas;
- Land uses;
- Land cover;
- Design elements;
- A general description not broken down by drainage management areas (DMAs).

Include attributes relevant to determining applicable source controls. *Refer to Section 2.2 in the Technical Guidance Document (TGD) for information that must be included in the project description.*

Description of Proposed Project					
Development Category (From Model WQMP, Table 7.11-2; or -3):	Redevelopment project that creates, adds, or replaces at least 5,000 square feet of impervious surface on an already developed site and the existing development or redevelopment project falls under another Priority Development Project Category.				
Project Area (ft²): 222,156	Number of Dwelling Units: 13 SIC Code: N/A				
D 1 1 D 1 4 (62)	Pervious		Impervious		
Project Drainage Area (ft²): 222,156 (5.1 Acres)	Area (acres or sq ft)	Percentage	Area (acres or sq ft)	Percentage	
Pre-Project Conditions	4.1	80% (100% for Basin Design)	1.0	20% (0% for Basin Design)	
Post-Project Conditions	2.0	40% (OC H Manual Allows 70% For 2.5 DU/Ac)	3.1	60% (OC H Manual Allows 30% For 2.5 DU/Ac)	

Drainage Patterns/Connections	The site is in the within the Canada Gobernadora watershed of southern Orange County, which is tributary to San Juan Creek. Site drainage generally flows south to Via Pajaro. Currently on-site drainage sheet flows from impervious and pervious surfaces and is collected by various storm drain pipes that outlet into a small natural creek adjacent to Via Pajaro. The natural creek drains south eventually draining into Canada Gobernadora. Canada Gobernadora drains south into San Juan Creek which ultimately discharges into the Pacific Ocean.
Narrative Project Description: (Use as much space as necessary.)	The project site is the Oak Grove residential development and is bounded by Vista del Verde and Via Pajaro on the south and Coto Equestrian Preserve to the north, in the Coto de Caza community, an unincorporated portion of the County of Orange. This property lies within the Canada Gobendora Watershed. The current property is part of the Coto De Caza Equestrian Preserve which has been in existence for over 30 years. The proposed project will consist of 13 single family residential units. The project site will drain northwest towards the Coto Equestrian Preserve where it will be conveyed into a proposed underground infiltration reservoir. This reservoir will provide water quality treatment and flow attenuation for hydromodification purposes before discharging runoff into the natural creek adjacent to Via Pajaro.
Priority Project Category	Redevelopment project that creates, adds, or replaces at least 5,000 square feet of impervious surface on an already developed site and the existing development or redevelopment project falls under another Priority Development Project Category. The proposed improvements are anticipated to replace more than 50% of the sites total existing impervious surfaces so the entire site will be treated.

II.2 Potential Stormwater Pollutants

Determine and list expected stormwater pollutants based on land uses and site activities. *Refer to Section 2.2.2 and Table 2.1 in the Technical Guidance Document (TGD) for guidance.*

Pollutants of Concern			
Pollutant	E=Expect of co	k One: cted to be ncern Expected concern	Additional Information and Comments
Bacteria and Viruses	E 🖂	N□	
Metals	Е 🗆	N⊠	Not anticipated for residential developments.
Nutrients	E 🗵	N□	
Pesticides	E 🖂	N□	
Organic Compounds	Е 🗆	N⊠	Not anticipated for residential developments.
Sediments	E⊠	N□	
Trash and Debris	E⊠	N□	
Oxygen-Demanding Substances	E 🖂	N□	
Oil and Grease	E⊠	N□	

II.3 Hydrologic Conditions of Concern

Determine if streams located downstream from the project area are potentially susceptible to hydromodification impacts. <i>Refer to Section 2.2.3.2 in the TGD and Appendix C of the Model WQMP for reference to applicable technical guidance for determining if downstream channels are susceptible to HCOCs.</i>
No − Show mapYes − Describe applicable HCOCs below. <i>Refer to Section 2.2.3 in the TGD</i>.
The project discharges to a natural creek followed by Canada Gobendora, which is not a hydromodification exempt receiving water according to the South OC Hydromodfication Management Plan (HMP) dated April 1, 2015. Canada Gobernadora is therefore susceptible to HCOCs and the project is subject to the HMP requirements.

II.4 Post Development Drainage Characteristics

Describe post development drainage characteristics. Refer to Section 2.2.4 in the TGD.

Stormwater runoff from the site will sheet flow from each lot through pervious landscaped areas before being conveyed into the proposed Oak Grove Street. A proposed concrete swale located at the north east end of the site will convey runoff from the development into the water quality/hydromodification underground infiltration reservoir. The reservoir will then discharge into the adjacent natural creek through an existing storm drain culvert similar to the existing condition. The proposed drainage improvements will divert runoff from the development to the existing storm drain at a single discharge point as shown on the WQMP Exhibit. In the existing condition the site discharges to the natural creek through two discharge locations. The majority of the site drains to the existing storm drain, as discussed in the proposed condition, and a portion of the site (approximately 3.31 acres) drains to the natural creek at a point south of the single drainage point in the proposed condition. This increase in drainage area was included in the hydromodification model and is provided in Attachment C. Tributary drainage areas for the existing and proposed condition are provided in the stand alone Oak Grove and Coto Equestrian Preserve Master Drainage Plan. The proposed underground infiltration reservoir was designed to mimic the predeveloped condition to mitigate for increases in runoff into the natural creek. Currently the site partially sheet flows into the natural creek as well as into an existing storm drain system in Via Pajaro. The existing storm drain system in Via Pajaro discharges to the local stream adjacent to Via Pajaro just south of the project. The local stream adjacent Via Pajaro discharges into Canada Gobernadora which confluences downstream with San Juan Creek, which discharges to the Pacific Ocean.

II.5 Property Ownership/Management

Describe property ownership/management. *Refer to Section 2.2.5 in the TGD.*

The proposed improvements are owned by the Silver-Bronze Corporation and Oak Grove LLC, which is also responsible for the ongoing property ownership, management, and maintenance of the structure. Operation and maintenance of the BMPs and on-site storm drain facilities are the responsibility of the Owner until a Home Owner's Association (HOA) is formed. The Owner shall ensure that the WQMP is implemented and that the site is maintained by the HOA in perpetuity throughout the life of the facility. The WQMP and BMP maintenance records shall be kept on-site at the HOA management company office at all times and available upon request.

Section III Site Description

III.1 Physical Setting

Fill out table with relevant information. *Refer to Section 2.3.1 in the TGD.*

Name of Planned Community/Planning Area (if applicable)	Oak Grove
Location/Address	23432 Vista Del Verde
Eccution, Fluctess	Coto De Caza, CA 92679
General Plan Land Use Designation	Suburban Residential (1B)
Zoning	Coto de Caza Specific Plan, Planning Area 21, Community Center Commercial
Acreage of Project Site	5.1 acres
Predominant Soil Type	The on-site soils have been identified as a mix of Sandy Clays. These soils are identified in the Orange County Hydrology Manual as Hydrologic Soils Group A and C.

III.2 Site Characteristics

Fill out table with relevant information and include information as it relates to BMP sizing, suitability, and feasibility, as applicable. *Refer to Section 2.3.2 in the TGD*. Include additional narrative, as applicable, to summarize findings of site investigations. Include references to applicable studies/reports related to investigation of the site and evaluation of feasibility of LID BMPs.

	Site Characteristics
Precipitation Zone	The project is located in the 1.0-inch design capture storm depth rainfall zone.

Topography	The development is located on a gently sloping parcel that generally slopes 2% to the south. Adjacent to the property are slopes ranging from 2% to 50%.
Drainage Patterns/Connections	The site currently discharges to an existing storm drain system in Via Pajaro, that discharges into a local stream adjacent to Via Pajaro, which discharges into Canada Gobernadora which confluences downstream with San Juan Creek and ultimately discharges to the Pacific Ocean.
Soil Type, Geology, and Infiltration Properties	The on-site soils have been identified as Sandy Clays. These soils are identified in the Orange County Hydrology Manual as Hydrologic Soils Group A and C. Soils maps are provided in the stand alone Oak Grove and Coto Equestrian Preserve Master Drainage Plan
Hydrogeologic (Groundwater) Conditions	Shallow groundwater is not anticipated on the site however will be addressed during the Final WQMP once the geotechnical evaluation has been completed.
Geotechnical Conditions (relevant to infiltration)	Sandy clays present on site could potentially reduce infiltration rates. Infiltration testing will occur during the Final WQMP.
Off-Site Drainage	Drainage improvements adjacent to the site will eliminate any run on from off-site residential/equestrian areas.
Utility and Infrastructure Information	Typical utilities related to residential and commercial land use are present within the property.

III.3 Watershed Description

Fill out table with relevant information and include information regarding BMP sizing, suitability, and feasibility, as applicable. *Refer to Section 2.3.3 in the TGD*.

Receiving Waters	Local stream adjacent to Via Pajaro, Canada Gobernadora, San Juan Creek and the Pacific Ocean
303(d) Listed Impairments	Indicator Bacteria, Phosphorus, Metals, Total Nitrogen as N, and Toxicity
Applicable TMDLs	Total Maximum Daily Loads for Indicator Bacteria

Pollutants of Concern for the Project	Sediment, nutrients, heavy metals, pathogens, pesticides, nutrients, organic compounds, oils, grease, and trash
Environmentally Sensitive and Special Biological Significant Areas	2010 303(d) list of impaired water bodies; The confluence of San Juan Creek with the Pacific Ocean is located four miles south from Heisler Park ASBS (ASBS No. 30).

Section IV Best Management Practices (BMPs)

IV. 1 Project Performance Criteria

Describe project performance criteria. Several steps must be followed in order to determine what performance criteria will apply to a project. These steps include:

- Determine applicable hydromodification control performance criteria. *Refer to Section 7.II-2.4.2.2 and Appendix C of the Model WQMP.*
- Determine applicable LID performance criteria. *Refer to Section 7.II-2.4.3 of the Model WQMP*.
- Calculate the LID DCV for the project. *Refer to Section 7.II-2.4.3 of the Model WQMP*.

	Project Performance Criteria
If HCOC exists, list applicable hydromodification control performance criteria (Section 7.II-2.4.2.2 in	According to Section 3.1 - HMP Criteria and Performance Standard, of the South Orange County Hydromodification Management Plan dated April 1, 2015 the HMP criteria for all PDPs is: All PDPs must ensure that post-project runoff flow rates and durations for the PDP shall not exceed pre-development, naturally occurring, runoff flow rates and durations by more than 10% of the time, from 10% of the 2-year runoff event up to the 10-year runoff event.
MWQMP)	According to Section 7.II-2.4.3 of the Model WQMP the following is
List applicable LID performance criteria (Section 7.II-2.4.3 from MWQMP)	 According to Section 7.11-2.4.5 of the Model WQWI the following is the LID performance criteria: Priority Development Projects must infiltrate, harvest and use, evapotranspire, or biofilter, the 85th percentile, 24-hour storm event DCV. A properly designed biofiltration system may only be considered if infiltration, harvest and use, and evapotranspiration (ET) cannot be feasibly implemented for the full design capture volume. In this case, infiltration, harvest and use, and ET practices must be implemented to the greatest extent feasible and biofiltration may be provided for the remaining DCV.
Calculate LID design storm capture volume for Project.	Total Tributary Drainage Area = 5.1 acres Precipitation Depth = 1.0 inches Impervious % = 60% Runoff Coefficient = 0.87 unitless Total DCV = $(5.1x43560)x(1.0/12)x(0.87) = 16,106$ cubic feet

IV.2. Site Design and Drainage

Describe site design and drainage including

- A narrative of site design practices utilized or rationale for not using practices;
- A narrative of how site is designed to allow BMPs to be incorporated to the MEP
- A table of DMA characteristics and list of LID BMPs proposed in each DMA.
- Reference to the WQMP "BMP Exhibit."
- Calculation of Design Capture Volume (DCV) for each drainage area.
- A listing of GIS coordinates for LID and Treatment Control BMPs (if applicable).

Refer to Section 2.4.2 in the Technical Guidance Document (TGD).

The project is located within the Canada Gobernadora watershed of southern Orange County, which is tributary to San Juan Creek. The vicinity map on the WQMP Exhibit in Attachment B shows the location of the development from a regional perspective. The project site is bounded by Vista del Verde and Via Pajaro on the south and Coto Equestrian Preserve to the north, in the Coto de Caza community, an unincorporated portion of the County of Orange.

The site planning principles integrated into the site design include minimization of impervious surfaces and disconnection of impervious surfaces. The site was planned to minimize the impervious surfaces to be integrated into the site to the maximum extent practicable by including only the structural features to make the site function for the intended purpose.

The project area is divided up into one main Drainage Management Area (DMA) which contains one underground infiltration reservoir located at the downstream end of the development. The drainage boundary, flow patterns, discharge location, and underground infiltration reservoir for the project site are shown in the C-WQMP Exhibit in Attachment B.

The coordinates for the underground infiltration reservoir are as follows:

Lat: 33°37'23.1"N, Long: 117°34'53.6"W

DCV = Drainage Area (square feet) x Precipitation Depth (inches) x Runoff Coefficient Total Tributary Drainage Area = 5.1 acres

Precipitation Depth = 1.0 inches

Impervious % = 60%

Runoff Coefficient = 0.87 unit less

Total DCV = (5.1x43560)x(1.0/12)x(0.87) = 16,106 cubic feet

IV.3 LID BMP Selection and Project Conformance Analysis

Each sub-section below documents that the proposed design features conform to the applicable project performance criteria via check boxes, tables, calculations, narratives, and/or references to worksheets. *Refer to Section 2.4.2.3 in the Technical Guidance Document (TGD) for selecting LID BMPs and Section 2.4.3 in the TGD for conducting conformance analysis with project performance criteria. Refer to Appendix C of the Model WQMP for hydromodification criteria and analysis methods.*

IV.3.1 Hydrologic Source Controls (HSCs)

If required HSCs are included, fill out applicable check box forms. If the retention criteria are otherwise met with other LID BMPs, include a statement indicating HSCs not required.

Name	Included
Localized on-lot infiltration	
Impervious area dispersion (e.g. roof top disconnection)	
Street trees (canopy interception)	
Residential rain barrels (not actively managed)	
Green roofs/Brown roofs	
Impervious area reduction (e.g. permeable pavers, site design)	
Other:	

IV.3.2 Infiltration BMPs

Identify infiltration BMPs to be used in project. Include sections for selection, suitability, sizing, and infeasibility, as applicable.

Name	Included
Bioretention without underdrains	
Rain gardens	
Porous landscaping	
Infiltration planters	
Retention swales	
Infiltration trenches	
Infiltration basins	

Drywells	
Subsurface infiltration galleries	
French drains	
Permeable asphalt	
Permeable concrete	
Permeable concrete pavers	
Other:	
Other:	

Show calculations below to demonstrate if the LID Design Strom Capture Volume can be met with infiltration BMPs. If not, document how much can be met with infiltration and document why it is not feasible to meet the full volume with infiltration BMPs.

Infiltration BMPs were used on site as the onsite soils are very sandy. An infiltration rate of 2.5 in/hr was used as an estimate during this conceptual stage. Infiltration tests will be performed during the final design for the project. The current underground infiltration reservoir has been designed with a 2.5 in/hr rate that is to be verified once infiltration tests are completed. A geotechnical report will be provided with the final WQMP.

The underground infiltration reservoir has been designed with an invert surface area of 4,060 sf. Using a 2.5 in/hr infiltration rate and a ponding depth of 2.5 feet, the drawdown is 20 hours. A 4.5′ depth and 4,060 sf surface area provides capacity for 18,270 cf which exceeds the DCV of 16,106 cf.

IV.3.3 Evapotranspiration, Rainwater Harvesting BMPs

If the full DCV cannot be met with infiltration BMPs, describe any evapotranspiration and/or rainwater harvesting BMPs. Include sections for selection, suitability, sizing, and infeasibility, as applicable.

Name	Included
All HSCs; See Section IV.3.1	
Surface-based infiltration BMPs	
Biotreatment BMPs	
Above-ground cisterns and basins	
Underground detention	
Other:	

Show calculations and provide narrative below to demonstrate if the LID DCV can be met with evapotranspiration, rainwater harvesting BMPs in combination with infiltration BMPs. If not document how much can be met with either infiltration BMPs, evapotranspiration, rainwater harvesting BMPs, or a combination, and document why it is not feasible to meet the full volume with either of these BMPs categories. Included reference to applicable findings from site assessment activities, including references to studies prepared to substantiate findings of feasibility or infeasibility, as applicable.

Eva	notrans	niration	was not	evaluated	because	the DCV	/ is met	using a	an infiltration	BMP
⊏va	poutans	phanon	was not	evaluateu	Decause	ule DC	/ 15 met	usnig	an munuanon	i Divii .

IV.3.4 Biofiltration BMPs

If the full DCV cannot be met with infiltration BMPs, and/or evapotranspiration and rainwater harvesting BMPs, describe the biofiltration BMPs use to address the remainder of the DCV. Include sections for selection, suitability, sizing, and infeasibility, as applicable.

Name	Included
Bioretention with underdrains	
Stormwater planter boxes with underdrains	
Rain gardens with underdrains	
Proprietary vegetated biotreatment systems	
Other:	

Show calculations below to demonstrate if the LID DCV can be met with a combination of infiltration, evapotranspiration, rainwater harvesting and/or biotreatment BMPs. Show calculations to demonstrate that the "pre-filter detention volume plus pore volume" in biofiltration BMPs is at least 0.75 of the remaining DCV (after accounting for retention achieved before using biofiltration BMPs). If it is not feasible to meet the DCV with a combination of either infiltration BMPs, evapotranspiration, rainwater harvesting BMPs, document why it is not feasible to meet the full volume with either of these BMPs categories and document how much can be feasibily retained plus biofiltered.

Biofiltration BMPs were not evaluated because the DCV is met using an infiltration BMP.

IV.3.5 Hydromodification Control BMPs

Describe hydromodification control BMPs. Include sections for selection, suitability, sizing, and infeasibility, as applicable. Detail compliance with Prior Conditions of Approval (if applicable).

See Appendix C – HCOC Guidance Memorandum of the South Orange County Model WQMP (12/20/2013) and Section 5 of the Technical Guidance Document (TGD) for details. The sizing tool for hydromodification utilizes SOCHM to confirm the mitigation on peak and flow duration of 10% Q2 to Q10, with continuous modeling, per TGD. The proposed BMP shall meet the HMP requirements of the San Diego Water Quality Control Board. Download "South Orange County Hydromodification Requirements (effective October 25, 2012)" and the SOCHM computer program from www.ocplanning.net/water.

Hydromodification Control BMPs				
BMP Name	BMP Description			
Underground infiltration reservoir	Underground infiltration reservoir was sized using SOCHM to meet the hydromodification criteria will be implemented for the project. Calculations and results are provided in Attachment C. The type of underground infiltration reservoir will be designed in detail during the final design. Potential BMP types are dry wells, precast concrete units, cast in place concrete reservoir, or CMP/HDPE chambers.			

Attach the sketches of engineeing sections / details of the proposed Hydromodification BMPs for references.

IV.3.6 Non-structural Source Control BMPs

Fill out non-structural source control check box forms or provide a brief narrative explaining if non-structural source controls were not used.

	Non-Structural Source Control BMPs						
		Che	ck One	If not applicable, state brief			
Identifier	Name	Included	Not Applicable	reason			
N1	Education for Property Owners, Tenants and Occupants	\boxtimes					
N2	Activity Restrictions						
N3	Common Area Landscape Management			NA – Not a Part of Project			
N4	BMP Maintenance						
N5	Title 22 CCR Compliance (How development will comply)			NA – Not Required for the site.			
N6	Local Industrial Permit Compliance			NA – Not Required for the site.			
N7	Spill Contingency Plan			NA – Not Required for the site.			
N8	Underground Storage Tank Compliance		\boxtimes	NA – Not a Part of Project			
N9	Hazardous Materials Disclosure Compliance		\boxtimes	NA – Not a Part of Project			
N10	Uniform Fire Code Implementation			NA – Not a Part of Project			
N11	Common Area Litter Control			NA – Not a Part of Project			
N12	Employee Training			NA – Not a Part of Project			
N13	Housekeeping of Loading Docks			NA – Not a Part of Project			
N14	Common Area Catch Basin Inspection		\boxtimes	NA – Not a Part of Project			
N15	Street Sweeping Private Streets and Parking Lots		\boxtimes	NA – Not a Part of Project			
N16	Retail Gasoline Outlets		\boxtimes	NA – Not a Part of Project			

IV.3.7 Structural Source Control BMPs

Fill out structural source control check box forms or provide a brief narrative explaining if structural source controls were not used.

Structural Source Control BMPs							
		Chec	k One	If not applicable, state brief			
Identifier	Name	Included	Not Applicable	reason			
S1	Provide storm drain system stenciling and signage			Catch basins are not included in the project.			
S2	Design and construct outdoor material storage areas to reduce pollution introduction		\boxtimes	NA – Not a Part of Project			
S3	Design and construct trash and waste storage areas to reduce pollution introduction			NA – Not a Part of Project			
S4	Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source control						
S5	Protect slopes and channels and provide energy dissipation		\boxtimes	NA – Not a Part of Project			
	Incorporate requirements applicable to individual priority project categories (from SDRWQCB NPDES Permit)	\boxtimes					
S6	Dock areas			NA – Not a Part of Project			
S7	Maintenance bays			NA – Not a Part of Project			
S8	Vehicle wash areas			NA – Not a Part of Project			
S9	Outdoor processing areas			NA – Not a Part of Project			
S10	Equipment wash areas			NA – Not a Part of Project			
S11	Fueling areas	П	\boxtimes	NA – Not a Part of Project			
S12	Hillside landscaping			NA – Not a Part of Project			
S13	Wash water control for food preparation areas		\boxtimes	NA – Not a Part of Project			
S14	Community car wash racks			NA – Not a Part of Project			

IV.4 Alternative Compliance Plan (If Applicable)

IV.4.1 Request of Waiver of LID BMPs

Provide documentation of feasibility analysis if implementation of LID BMPs is technically infeasible. *Refer to Section 7.II-3.1 in the Model WQMP*. Calculate the amount of remaining obligation that must be met with alternative compliance (*See TGD Appendix VI*).

IV.4.2 Water Quality Credits

Determine if water quality credits are applicable for the project. *Refer to Section 7.II-3.2.2 of the SOC Model WQMP for description of credits and Appendix VI of the Technical Guidance Document (TGD) for calculation methods for applying water quality credits.*

Description of Proposed Project					
Project Types that Qualify for Water Quality Credits (Select all that apply):					
Redevelopment projects that reduce the overall impervious footprint of the project site.	property which may be complicated by the presence or potential presence of hazardous substances, pollutants or contaminants, and which have the potential to contribute to adverse ground or surface WQ if not redeveloped.		Higher density development projects which include two distinct categories (credits can only be taken for one category): those with more than seven units per acre of development (lower credit allowance); vertical density developments, for example, those with a Floor to Area Ratio (FAR) of 2 or those having more than 18 units per acre (greater credit allowance)		
Mixed use development, such as a combination of residential, commercial, industrial, office, institutional, or other land uses which incorporate design principles that can demonstrate environmental benefits that would not be realized through single use projects (e.g. reduced vehicle trip traffic with the potential to reduce sources of water or air pollution).		☐ Transit-oriented developments, such as a mixed use residential or commercial area designed to maximize access to public transportation; similar to above criterion, but where the development center is within one half mile of a mass transit center (e.g. bus, rail, light rail or commuter train station). Such projects would not be able to take credit for both categories, but may have greater credit assigned		Redevelopment projects in an established historic district, historic preservation area, or similar significant city area including core City Center areas (to be defined through mapping).	
□ Developments with dedication of undeveloped portions to parks, preservation areas and other pervious uses. □ Developments in historic districts or vocation similar to use developed areas. □ Live-developments in historic districts or historic preservation areas. □ Live-developments in historic districts or vocation similar to use developments in historic preservation areas. □ Live-developments in historic districts or vocation similar to use developments in historic districts or vocation areas. □ Live-developments in historic districts or vocation similar to use developments in historic districts or vocation areas. □ Live-developments in historic districts or vocation similar to use developments in historic districts or vocation similar to use developments in historic districts or vocation similar to use developments in historic districts or vocation similar to use developments in historic districts or vocation similar to use developments in historic districts or vocation similar to use developments in historic districts or vocation similar to use developments in historic preservation areas.		developm support re vocational similar to use develo	ents, a variety of ents designed to esidential and I needs together – criteria to mixed opment; would not take credit for	☐In-fill projects, the conversion of empty lots and other underused spaces into more beneficially used spaces, such as residential or commercial areas.	
Calculation of Water	Not Applicable	2			

IV.4.3 Treatment Control BMPs

Treatment control BMPs can only be considered if the project conformance analysis indicates that it is not feasible to retain and/or biofilter the full DCV with LID BMPs. Describe treatment control BMPs used as part of an alternative compliance program, including sections for selection and sizing, as applicable. *Refer to Section 7.II-3.3 in the Model WQMP*.

Т	reatment C	ontrol BMPs	
Technique	Included?		If not applicable, state brief reason
	Yes	No	,
Vegetated (Grass) Strips			DCV is being treated with infiltration.
Vegetated (Grass) Swales		\boxtimes	DCV is being treated with infiltration.
Proprietary Control Measures			DCV is being treated with infiltration.
Dry Detention Basin			DCV is being treated with infiltration.
Wet Detention Basin		\boxtimes	DCV is being treated with infiltration.
Constructed Wetland			DCV is being treated with infiltration.
Detention Basin/Sand Filter			DCV is being treated with infiltration.
Porous Pavement Detention			DCV is being treated with infiltration.
Porous Landscape Detention			DCV is being treated with infiltration.
Infiltration Basin			DCV is being treated with infiltration.
Infiltration Trench			DCV is being treated with infiltration.
Media Filter (Please describe and provide brand name and model)		\boxtimes	DCV is being treated with infiltration.
Proprietary Control Measures (Please describe and provide brand name and model)			DCV is being treated with infiltration.

IV.4.4 Regional/Sub-Regional LID BMPs

Describe regional/sub-regional LID BMPs in which the project will participate as part of alternative compliance. Include references to applicable reports or prior approvals of regional/sub-regional BMPs, as applicable, to demonstrate that use of regional/sub-regional BMPs are consistent with Model WQMP requirements. *Refer to Section 7.II-3.5 of the Model WQMP*.

Regional/Sub-Regional LID BMPs
Not Applicable
IV.4.5 Other Alternative Compliance Measures Describe additional alternative compliance measures that will fully or partially meet the remaining LID obligations in association with treatment control BMP use (i.e., off-site mitigation project and/or stormwater mitigation fund). Include calculations to demonstrate how remaining alternative compliance. <i>Refer to Section 7.II-3.4 in the Model WQMP</i> .
Not Applicable

Section V Inspection/Maintenance Responsibility for BMPs

Fill out information in table below. Prepare and attach an Operation and Maintenance Plan. Identify the funding mechanism through which BMPs will be maintained. Inspection and maintenance records must be kept for a minimum of five years for inspection by the regulatory agencies. *Refer to Section 7.II 4.0 in the Model WQMP*.

BMP Inspection/Maintenance			
ВМР	Reponsible Party(s)	Inspection/ Maintenance Activities Required	Minimum Frequency of Activities
Underground infiltration reservoir	Oak Grove HOA	Details provided in Attachment D	Biannual (Before and after the wet season)
Storm Drains	Oak Grove HOA	Details provided in Attachment D	Biannual (Before and after the wet season)

Section VI BMP Exhibit (Site Plan)

VI.1 BMP Exhibit (Site Plan)

Include a BMP Exhibit (Site Plan), at a size no less than 24" by 36," which includes the following minimum information:

- Insert in the title block (lower right hand corner) of BMP Exhibit: the WQMP Number (assigned by staff) and the grading/building or Planning Application permit numbers
- Project location (address, tract/lot number(s), etc.)
- Site boundary
- Land uses and land covers, as applicable
- Suitability/feasibility constraints
- Structural BMP locations
- Drainage delineations and flow information
- Delineate the area being treated by each structural BMP
- GIS coordinates for LID and Treatment Control BMPs
- Drainage connections
- BMP details
- Preparer name and stamp

Please do not include any areas outside of the project area or any information not related to drainage or water quality. The approved BMP Exhibit (Site Plan) shall be submitted as a plan sheet on all grading and building plan sets submitted for plan check review and approval. The BMP Exhibit shall be at the same size as the rest of the plan sheets in the submittal and shall have an approval stamp and signature prior to plan check submittal.

VI.2 Submittal and Recordation of Water Quality Management Plan

Following approval of the Final Project-Specific WQMP, three copies of the approved WQMP (including BMP Exhibit, Operations and Maintenance (O&M) Plan, and Appendices) shall be submitted. In addition, these documents shall be submitted in a PDF format.

Each approved WQMP (including BMP Exhibit, Operations and Maintenance (O&M) Plan, and Appendices) shall be recorded in the Orange County Clerk-Recorder's Office, prior to close-out of grading and/or building permit. Educational Materials are not required to be included.

Section VII Educational Materials

Refer to the Orange County Stormwater Program (ocwatersheds.com) for a library of materials available. Please only attach the educational materials specifically applicable to this project. Other materials specific to the project may be included as well and must be attached.

Education Materials			
Residential Material	Check If	Business Material Check	
(http://www.ocwatersheds.com)	Applicable	(http://www.ocwatersheds.com)	Applicable
The Ocean Begins at Your Front Door		Tips for the Automotive Industry	
Tips for Car Wash Fund-raisers		Tips for Using Concrete and Mortar	
Tips for the Home Mechanic		Tips for the Food Service Industry	
Homeowners Guide for Sustainable Water Use		Proper Maintenance Practices for Your Business	
Household Tips			Check If
Proper Disposal of Household Hazardous Waste		Other Material	Attached
Recycle at Your Local Used Oil Collection Center (North County)			
Recycle at Your Local Used Oil Collection Center (Central County)			
Recycle at Your Local Used Oil Collection Center (South County)			
Tips for Maintaining a Septic Tank System			
Responsible Pest Control			
Sewer Spill			
Tips for the Home Improvement Projects			
Tips for Horse Care			
Tips for Landscaping and Gardening			
Tips for Pet Care			
Tips for Pool Maintenance			
Tips for Residential Pool, Landscape and Hardscape Drains			
Tips for Projects Using Paint			

Attachment A BMP Fact Sheets and Educational Materials

Site Design & Landscape Planning SD-10

Design Objectives

- ✓ Maximize Infiltration
- ✓ Provide Retention
- ✓ Slow Runoff
- Minimize Impervious Land Coverage
 Prohibit Dumping of Improper Materials

Contain Pollutants

Collect and Convey

Description

Each project site possesses unique topographic, hydrologic, and vegetative features, some of which are more suitable for development than others. Integrating and incorporating appropriate landscape planning methodologies into the project design is the most effective action that can be done to minimize surface and groundwater contamination from stormwater.

Approach

Landscape planning should couple consideration of land suitability for urban uses with consideration of community goals and projected growth. Project plan designs should conserve natural areas to the extent possible, maximize natural water storage and infiltration opportunities, and protect slopes and channels.

Suitable Applications

Appropriate applications include residential, commercial and industrial areas planned for development or redevelopment.

Design Considerations

Design requirements for site design and landscapes planning should conform to applicable standards and specifications of agencies with jurisdiction and be consistent with applicable General Plan and Local Area Plan policies.

Association

California Stormwater Quality

SD-10 Site Design & Landscape Planning

Designing New Installations

Begin the development of a plan for the landscape unit with attention to the following general principles:

- Formulate the plan on the basis of clearly articulated community goals. Carefully identify conflicts and choices between retaining and protecting desired resources and community growth.
- Map and assess land suitability for urban uses. Include the following landscape features in the assessment: wooded land, open unwooded land, steep slopes, erosion-prone soils, foundation suitability, soil suitability for waste disposal, aquifers, aquifer recharge areas, wetlands, floodplains, surface waters, agricultural lands, and various categories of urban land use. When appropriate, the assessment can highlight outstanding local or regional resources that the community determines should be protected (e.g., a scenic area, recreational area, threatened species habitat, farmland, fish run). Mapping and assessment should recognize not only these resources but also additional areas needed for their sustenance.

Project plan designs should conserve natural areas to the extent possible, maximize natural water storage and infiltration opportunities, and protect slopes and channels.

Conserve Natural Areas during Landscape Planning

If applicable, the following items are required and must be implemented in the site layout during the subdivision design and approval process, consistent with applicable General Plan and Local Area Plan policies:

- Cluster development on least-sensitive portions of a site while leaving the remaining land in a natural undisturbed condition.
- Limit clearing and grading of native vegetation at a site to the minimum amount needed to build lots, allow access, and provide fire protection.
- Maximize trees and other vegetation at each site by planting additional vegetation, clustering tree areas, and promoting the use of native and/or drought tolerant plants.
- Promote natural vegetation by using parking lot islands and other landscaped areas.
- Preserve riparian areas and wetlands.

Maximize Natural Water Storage and Infiltration Opportunities Within the Landscape Unit

- Promote the conservation of forest cover. Building on land that is already deforested affects basin hydrology to a lesser extent than converting forested land. Loss of forest cover reduces interception storage, detention in the organic forest floor layer, and water losses by evapotranspiration, resulting in large peak runoff increases and either their negative effects or the expense of countering them with structural solutions.
- Maintain natural storage reservoirs and drainage corridors, including depressions, areas of permeable soils, swales, and intermittent streams. Develop and implement policies and

Site Design & Landscape Planning SD-10

regulations to discourage the clearing, filling, and channelization of these features. Utilize them in drainage networks in preference to pipes, culverts, and engineered ditches.

Evaluating infiltration opportunities by referring to the stormwater management manual for the jurisdiction and pay particular attention to the selection criteria for avoiding groundwater contamination, poor soils, and hydrogeological conditions that cause these facilities to fail. If necessary, locate developments with large amounts of impervious surfaces or a potential to produce relatively contaminated runoff away from groundwater recharge areas.

Protection of Slopes and Channels during Landscape Design

- Convey runoff safely from the tops of slopes.
- Avoid disturbing steep or unstable slopes.
- Avoid disturbing natural channels.
- Stabilize disturbed slopes as quickly as possible.
- Vegetate slopes with native or drought tolerant vegetation.
- Control and treat flows in landscaping and/or other controls prior to reaching existing natural drainage systems.
- Stabilize temporary and permanent channel crossings as quickly as possible, and ensure that increases in run-off velocity and frequency caused by the project do not erode the channel.
- Install energy dissipaters, such as riprap, at the outlets of new storm drains, culverts, conduits, or channels that enter unlined channels in accordance with applicable specifications to minimize erosion. Energy dissipaters shall be installed in such a way as to minimize impacts to receiving waters.
- Line on-site conveyance channels where appropriate, to reduce erosion caused by increased flow velocity due to increases in tributary impervious area. The first choice for linings should be grass or some other vegetative surface, since these materials not only reduce runoff velocities, but also provide water quality benefits from filtration and infiltration. If velocities in the channel are high enough to erode grass or other vegetative linings, riprap, concrete, soil cement, or geo-grid stabilization are other alternatives.
- Consider other design principles that are comparable and equally effective.

Redeveloping Existing Installations

Various jurisdictional stormwater management and mitigation plans (SUSMP, WQMP, etc.) define "redevelopment" in terms of amounts of additional impervious area, increases in gross floor area and/or exterior construction, and land disturbing activities with structural or impervious surfaces. The definition of "redevelopment" must be consulted to determine whether or not the requirements for new development apply to areas intended for redevelopment. If the definition applies, the steps outlined under "designing new installations" above should be followed.

SD-10 Site Design & Landscape Planning

Redevelopment may present significant opportunity to add features which had not previously been implemented. Examples include incorporation of depressions, areas of permeable soils, and swales in newly redeveloped areas. While some site constraints may exist due to the status of already existing infrastructure, opportunities should not be missed to maximize infiltration, slow runoff, reduce impervious areas, disconnect directly connected impervious areas.

Other Resources

A Manual for the Standard Urban Stormwater Mitigation Plan (SUSMP), Los Angeles County Department of Public Works, May 2002.

Stormwater Management Manual for Western Washington, Washington State Department of Ecology, August 2001.

Model Standard Urban Storm Water Mitigation Plan (SUSMP) for San Diego County, Port of San Diego, and Cities in San Diego County, February 14, 2002.

Model Water Quality Management Plan (WQMP) for County of Orange, Orange County Flood Control District, and the Incorporated Cities of Orange County, Draft February 2003.

Ventura Countywide Technical Guidance Manual for Stormwater Quality Control Measures, July 2002.

R-1 AUTOMOBILE REPAIR AND MAINTENANCE

Automobile repair and maintenance activities have the potential to contribute directly to storm drain systems primarily through spills or the dumping of waste fluids being conveyed to the storm drain. Automotive fluids, such as oils, greases, and solvents, are hydrocarbon based, and may contain metals, chlorinated hydrocarbons, and other toxic compounds. Removal of caked dirt and grime from an automobile increases the sediment load to the storm drain system. The pollution prevention activities outlined in this fact sheets are used to prevent the discharge of pollutants to the storm drain system.

The activities outlined in this fact sheet target the following pollutants:		
Sediment	х	
Nutrients		
Bacteria		
Foaming Agents		
Metals	Х	
Hydrocarbons	Х	
Hazardous Materials	Х	
Pesticides and		
Herbicides		
Other		

Think before conducting automobile repair and maintenance activities. Remember - The ocean starts at your front door.

Required Activities

- Recycle used oil and antifreeze by taking them to service stations and other recycling centers. Never pour oil in storm drains or other areas.
- Do not perform repair and maintenance activities during rain events.
- USED OIL Immediately clean up and contain any spills. Dispose of all waste and adsorbent materials properly.
- Store hazardous materials and wastes (including, but not limited to, fluids, solvents, parts containing fluids, batteries) indoors, under cover, or in watertight containers.
- Perform automobile maintenance and repairs over impervious surfaces such as concrete, so spills and waste material should be readily cleaned up. Use drip pans, plastic sheeting, etc. to contain spills and waste material.
- Dispose of cleaning solvents at the designated hazardous waste center.

Recommended Activities

- Conduct auto repair activities at a commercial repair facility
- Perform automobile repair and maintenance activities under a covered area.
- Do not buy fluids containing target pollutants (e.g. degreasers containing PERC).
- Monitor parked or stored vehicles and equipment for leaks and place pans under leaks to collect fluids for proper disposal or recycling.

or visit our website at: www.ocwatersheds.com

Automobile washing activities have the potential to contribute pollutants because road dust washed from vehicles may contain metals and hydrocarbons. Any leaking fluids washed from the automobile may be carried to the storm drain by the wash water. Detergents used for automobile washing may also contain phosphorus and foaming agents, which contribute to the eutrophication of receiving waterbodies. The pollution prevention activities outlined in this fact sheets are used to prevent the discharge of pollutants to the storm drain system.

The activities outlined in sheet target the following pollutants:	
Sediment	х
Nutrients	Х
Bacteria	
Foaming Agents	X
Metals	X
Hydrocarbons	X
Hazardous Materials	Х
Pesticides and	
Herbicides	
Other	

Think before conducting automobile washing activities. Remember - The ocean starts at your front door.

Required Activities

- Shake floor mats into trashcan or vacuum to clean. Do not shake over ground.
- If using cleaners (such as acid based wheel cleaners) use a rag to wipe them on and off, do not rinse them off with water.
- If possible, divert runoff from automobile washing to a grassy surface large enough to contain and allow complete infiltration
- Dispose of excess wash water into the sanitary sewer (i.e. via sink, or toilet) or onto a landscaped area that will allow for complete infiltration.
- Conduct engine degreasing at a commercial facility that is set up to handle that type of waste.

Recommended Activities

- When possible, use commercial wash facilities
- Wash vehicles over pervious surfaces such as lawns and gravel areas
- Choose soaps, cleaners, or detergents labeled "non-toxic", "phosphate free", or "biodegradable". Vegetable and citrus-based products are typically safest for the environment.
- Turn off water when not actively washing down automobile.
- If available, use established neighborhood wash areas, where runoff is properly controlled and managed.

R-4 HOME AND GARDEN CARE ACTIVITIES

HOME CARE

Many hazardous materials may be used in and around residences during routine maintenance activities (such as: oils, paints, cleaners, bleaches, pesticides, glues, solvents, and other products). Improper or excessive use of these products can increase the potential for pollutants to be transported to the storm drain by runoff. The pollution prevention activities outlined in this fact sheets are used to prevent the discharge of pollutants to the storm drain system.

Think before conducting home care activities. Remember - The ocean starts at your front door.

The activities outlined in this fact sheet target the following pollutants:	
Sediment	Х
Nutrients	
Bacteria	Х
Foaming Agents	Х
Metals	Х
Hydrocarbons	Х
Hazardous Materials	Х
Pesticides and	
Herbicides	
Other	Х

Required Activities

- Clean out painting equipment in an area where the waste can be contained and properly disposed of (latex – sewer, oil based – household hazardous waste center).
- Rinse off cement mixers and cement laden tools in a contained washout area. Dispose of dried concrete waste in household trash.
- If safe, contain, clean up, and properly dispose all household hazardous waste spills. If an unsafe condition exists, call 911 to activate the proper response team.
- Household hazardous materials must be stored indoors or under cover, and in closed and labeled containers. Dispose of them at a household hazardous waste center.
- Household wash waters (e.g. washer machine effluent, mop water, etc.) must be disposed of in the sanitary sewer.
- Pool and spa water may be discharged to the storm drain if residual chlorine is less than 0.1 mg/L, the pH is between 6.5 and 8.5, and the water is free from any unusual coloration. (Call 714-834-6107 to obtain information on a pool drain permit). Pool filter media must be contained and disposed of properly.

Recommended Activities

- Only purchase the types and amounts of materials needed.
- Share unused portions of products with neighbors or community programs (latex paint)

GARDEN CARE

Garden activities may contribute pollutants via soil erosion, green waste, fertilizer and pesticide use. Plant and garden care activities such as landscape maintenance, fertilization, and pesticide application have the potential to discharge significant quantities of pollutants to the storm drain system. Nonvegetated surfaces may allow for significant erosion leading to high sediment loads. Other pollutants such as pesticides may adsorb onto the soil particles and be transported off site. Excess fertilizer and pesticide pollutants from over application may be carried to the storm drain by dissolving in irrigation runoff or rainwater. Green wastes may also contain organic matter and may have adsorbed fertilizers and pesticides.

The activities outlined in this fact sheet target the following pollutants:	
Sediment	Х
Nutrients	Х
Bacteria	Х
Foaming Agents	
Metals	
Hydrocarbons	
Hazardous Materials	
Pesticides and	Х
Herbicides	
Other	Х

Excessive irrigation is often the most significant factor in home and garden care activities. Pollutants may dissolve in irrigation water and then be transported to the storm drain, or particles and materials coated with fertilizers and pesticides may be suspended in the irrigation flow and carried to the storm drain. The pollution prevention activities outlined in this fact sheets are used to prevent the discharge of pollutants to the storm drain system.

Think before conducting garden care activities. Remember - The ocean starts at your front door.

Required Activities

- Irrigation systems must be properly adjusted to reflect seasonal water needs.
- Minimize the use of pesticides and fertilizers. Read the labels and follow directions to avoid improper use. Do not apply chemicals if it is windy or about to rain.
- Properly clean up and dispose of spills of gardening chemicals, fertilizes, or soils. If possible, return the spilled material to the container for future use.
- Lawn and garden care products must be stored in closed labeled containers, in covered areas, or off-ground and under protective tarps.
- Household hazardous waste must be properly disposed at a household hazardous waste center.
- Cover nonvegetated surfaces to prevent erosion.

Recommended Activities

- Utilize xeroscaping and use of drought and insect resistant landscaping.
- Cultivate garden often to control weeds
- Use integrated pest management (IPM). Planting pest repelling plants (e.g. Marigolds) or using pest eating insects (e.g. ladybugs) may reduce the need for pesticides.
- Do not leave food (human or pet) outside overnight
- Remove fruit and garden waste

R-5 DISPOSAL OF PET WASTES

Pet wastes left in the environment may introduce solids, bacteria, and nutrients to the storm drain. The type and quantity of waste will dictate the proper disposal method. Small quantities of waste are best disposed with regular trash or flushed down a toilet. Large quantities of wastes from herbivore animals may be composted for subsequent use or disposal to landfill.

Pick up after your pet! It's as easy as 1-2-3. 1) Bring a bag. 2) Clean it up. 3) Dispose of it properly (toilet or trash). The pollution prevention activities outlined in this fact sheets are used to prevent the discharge of pollutants to the storm drain system.

The activities outlined in sheet target the followin pollutants:	
Sediment	Х
Nutrients	х
Bacteria	Х
Foaming Agents	
Metals	
Hydrocarbons	
Hazardous Materials	
Pesticides and	
Herbicides	
Other	

Think before you dispose of any pet wastes. Remember - The ocean starts at your front door.

Required Activities

- All pet wastes must be picked up and properly disposed of. Pet waste should be disposed of in the regular trash, flushed down a toilet, or composted as type and quantities dictate.
- Properly dispose of unused flea control products (shampoo, sprays, or collars).
- Manure produced by livestock in uncovered areas should be removed at least daily for composting, or storage in water-tight container prior to disposal. Never hose down to stream or storm drain. Composting or storage areas should be configured and maintained so as not to allow contact with runoff. Compost may be donated to greenhouses, nurseries, and botanical parks. Topsoil companies and composting centers may also accept composted manure.
- Line waste pits or trenches with an impermeable layer, such as thick plastic sheeting.
- When possible, allow wash water to infiltrate into the ground, or collect in an area that is routed to the sanitary sewer.
- Confine livestock in fenced in areas except during exercise and grazing times.
 Restrict animal access to creeks and streams, preferably by fencing.

• Install gutters that will divert roof runoff away from livestock areas.

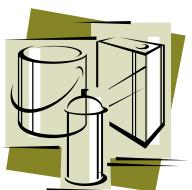
Recommended Activities

- In order to properly dispose of pet waste, carry bags, pooper-scooper, or equivalent to safely pick up pet wastes while walking with pets.
- Bathe pets indoors and use less toxic shampoos. When possible, have pets professionally groomed.
- Properly inoculate your pet in order to maintain their health and reduce the possibility of pathogens in pet wastes.
- Maintain healthy and vigorous pastures with at least three inches of leafy material.
- Consider indoor feeding of livestock during heavy rainfall, to minimize manure exposed to potential runoff.
- Locate barns, corrals, and other high use areas on portions of property that either drain away from or are located distant form nearby creeks or storm drains.

R-6 DISPOSAL OF GREEN WASTES

Green wastes entering the storm drain may clog the system creating flooding problems. Green wastes washed into receiving waters create an oxygen demand as they are decomposed, reducing the available oxygen for aquatic life. Pesticide and nutrient residues may be carried to the receiving water with the green wastes. The pollution prevention activities outlined in this fact sheets are used to prevent the discharge of pollutants to the storm drain system.

The activities outlined in sheet target the followin pollutants:	
Sediment	х
Nutrients	х
Bacteria	х
Foaming Agents	
Metals	
Hydrocarbons	
Hazardous Materials	х
Pesticides and	Х
Herbicides	
Other	


Think before disposing of any green wastes – Remember - The ocean starts at your front door.

Required Activities

- Green wastes can not be disposed of in the street, gutter, public right-of-way, storm drain, or receiving water. Dispose of green wastes as a part of the household trash. If the quantities are too large, arrange a pick up with the local waste hauler.
- After conducting yard or garden activities sweep the area and properly dispose of the clippings and waste. Do not sweep or blow out into the street or gutter.

Recommended Activities

- Utilize a commercial landscape company to conduct the landscape activities and waste disposal.
- Utilize native plants and drought tolerant species to reduce the water use and green waste produced.
- Use a lawn mower that has a mulcher so that the grass clippings remain on the lawn and do not have to be collected and disposed of.
- Compost materials in a designated area within the yard.
- Recycle lawn clippings and greenery waste through local programs if available.

R-7 HOUSEHOLD HAZARDOUS WASTE

Household hazardous wastes (HHW) are defined as waste materials which are typically found in homes or similar sources, which exhibit characteristics such as: corrosivity, ignitability, reactivity, and/or toxicity, or are listed as hazardous materials by EPA.

List of most common HHW products:

Drain openers Oven cleaners

Wood and metal cleaners and polishes

Automotive oil and fuel additives
Grease and rust solvents

Carburetor and fuel injection

cleaners Starter fluids

Batteries

Paint Thinners

Paint strippers and removers

Adhesives

Herbicides

Pesticides

Fungicides/wood preservatives

Many types of waste can be recycled, however options for each waste type are limited. Recycling is always preferable to disposal of unwanted materials. All

sheet target the followin pollutants:	g
Sediment	
Nutrients	
Bacteria	
Foaming Agents	Х
Metals	Х
Hydrocarbons	Х
Hazardous Materials	Х
Pesticides and	Х
Herbicides	
Other	Х

The activities outlined in this fact

gasoline, antifreeze, waste oil, and lead-acid batteries can be recycled. Latex and oil-based paint can be reused, as well as recycled. Materials that cannot be reused or recycled should be disposed of at a properly permitted landfill.

RECYCLE USED OIL

Think before disposing of any household hazardous waste. Remember - The ocean starts at your front door.

Required Activities

- Dispose of HHW at a local collection facility. Call (714) 834-6752 for the household hazardous waste center closest to your area.
- Household hazardous materials must be stored indoors or under cover, and in closed and labeled containers.
- If safe, contain, clean up, and properly dispose all household hazardous waste spills. If an unsafe condition exists, call 911 to activate the proper response team.

Recommended Activities

- Use non-hazardous or less-hazardous products.
- Participate in HHW reuse and recycling. Call (714) 834-6752 for the participating household hazardous waste centers.

The California Integrated Waste Management Board has a Recycling Hotline (800) 553-2962, that provides information and recycling locations for used oil.

For additional information contact:

Main: (714) 955-0600/ 24hr Water Pollution Discharge Hotline 1-877-89-SPILL

or visit our website at: www.ocwatersheds.com

R-8 WATER CONSERVATION

Excessive irrigation and/or the overuse of water is often the most significant factor in transporting pollutants to the storm drain system. Pollutants from a wide variety of sources including automobile repair and maintenance, automobile washing, automobile parking, home and garden care activities and pet care may dissolve in the water and be transported to the storm drain. In addition, particles and materials coated with fertilizers and pesticides may be suspended in the flow and be transported to the storm drain.

The activities outlined in this fact sheet target the following pollutants:				
Sediment	Х			
Nutrients	Х			
Bacteria	Х			
Foaming Agents	Х			
Metals	Х			
Hydrocarbons	Х			
Hazardous Materials	Х			
Pesticides and	Х			
Herbicides				
Other	Х			

Hosing off outside areas to wash them down not only Other X consumes large quantities of water, but also transports any pollutants, sediments, and waste to the storm drain system. The pollution prevention activities outlined in this fact sheets are used to prevent the discharge of pollutants to the storm drain system.

Think before using water. Remember - The ocean starts at your front door.

Required Activities

- Irrigation systems must be properly adjusted to reflect seasonal water needs.
- Do not hose off outside surfaces to clean, sweep with a broom instead.

Recommended Activities

- Fix any leaking faucets and eliminate unnecessary water sources.
- Use xeroscaping and drought tolerant landscaping to reduce the watering needs.
- Do not over watering lawns or gardens. Over watering wastes water and promotes diseases.
- Use a bucket to re-soak sponges/rags while washing automobiles and other items outdoors. Use hose only for rinsing.
- Wash automobiles at a commercial car wash employing water recycling.

Rain Garden

Design Objectives

- ✓ Maximize Infiltration
- Provide Retention
- ✓ Slow Runoff

 Minimize Impervious Land
 Coverage

 Prohibit Dumping of Improper
 Materials
- ✓ Contain Pollutants

 Collect and Convey

Description

Various roof runoff controls are available to address stormwater that drains off rooftops. The objective is to reduce the total volume and rate of runoff from individual lots, and retain the pollutants on site that may be picked up from roofing materials and atmospheric deposition. Roof runoff controls consist of directing the roof runoff away from paved areas and mitigating flow to the storm drain system through one of several general approaches: cisterns or rain barrels; dry wells or infiltration trenches; pop-up emitters, and foundation planting. The first three approaches require the roof runoff to be contained in a gutter and downspout system. Foundation planting provides a vegetated strip under the drip line of the roof.

Approach

Design of individual lots for single-family homes as well as lots for higher density residential and commercial structures should consider site design provisions for containing and infiltrating roof runoff or directing roof runoff to vegetative swales or buffer areas. Retained water can be reused for watering gardens, lawns, and trees. Benefits to the environment include reduced demand for potable water used for irrigation, improved stormwater quality, increased groundwater recharge, decreased runoff volume and peak flows, and decreased flooding potential.

Suitable Applications

Appropriate applications include residential, commercial and industrial areas planned for development or redevelopment.

Design Considerations

Designing New Installations

Cisterns or Rain Barrels

One method of addressing roof runoff is to direct roof downspouts to cisterns or rain barrels. A cistern is an above ground storage vessel with either a manually operated valve or a permanently open outlet. Roof runoff is temporarily stored and then released for irrigation or infiltration between storms. The number of rain

barrels needed is a function of the rooftop area. Some low impact developers recommend that every house have at least 2 rain barrels, with a minimum storage capacity of 1000 liters. Roof barrels serve several purposes including mitigating the first flush from the roof which has a high volume, amount of contaminants, and thermal load. Several types of rain barrels are commercially available. Consideration must be given to selecting rain barrels that are vector proof and childproof. In addition, some barrels are designed with a bypass valve that filters out grit and other contaminants and routes overflow to a soak-away pit or rain garden.

If the cistern has an operable valve, the valve can be closed to store stormwater for irrigation or infiltration between storms. This system requires continual monitoring by the resident or grounds crews, but provides greater flexibility in water storage and metering. If a cistern is provided with an operable valve and water is stored inside for long periods, the cistern must be covered to prevent mosquitoes from breeding.

A cistern system with a permanently open outlet can also provide for metering stormwater runoff. If the cistern outlet is significantly smaller than the size of the downspout inlet (say ¼ to ½ inch diameter), runoff will build up inside the cistern during storms, and will empty out slowly after peak intensities subside. This is a feasible way to mitigate the peak flow increases caused by rooftop impervious land coverage, especially for the frequent, small storms.

Dry wells and Infiltration Trenches

Roof downspouts can be directed to dry wells or infiltration trenches. A dry well is constructed by excavating a hole in the ground and filling it with an open graded aggregate, and allowing the water to fill the dry well and infiltrate after the storm event. An underground connection from the downspout conveys water into the dry well, allowing it to be stored in the voids. To minimize sedimentation from lateral soil movement, the sides and top of the stone storage matrix can be wrapped in a permeable filter fabric, though the bottom may remain open. A perforated observation pipe can be inserted vertically into the dry well to allow for inspection and maintenance.

In practice, dry wells receiving runoff from single roof downspouts have been successful over long periods because they contain very little sediment. They must be sized according to the amount of rooftop runoff received, but are typically 4 to 5 feet square, and 2 to 3 feet deep, with a minimum of 1-foot soil cover over the top (maximum depth of 10 feet).

To protect the foundation, dry wells must be set away from the building at least 10 feet. They must be installed in solids that accommodate infiltration. In poorly drained soils, dry wells have very limited feasibility.

Infiltration trenches function in a similar manner and would be particularly effective for larger roof areas. An infiltration trench is a long, narrow, rock-filled trench with no outlet that receives stormwater runoff. These are described under Treatment Controls.

Pop-up Drainage Emitter

Roof downspouts can be directed to an underground pipe that daylights some distance from the building foundation, releasing the roof runoff through a pop-up emitter. Similar to a pop-up irrigation head, the emitter only opens when there is flow from the roof. The emitter remains flush to the ground during dry periods, for ease of lawn or landscape maintenance.

Foundation Planting

Landscape planting can be provided around the base to allow increased opportunities for stormwater infiltration and protect the soil from erosion caused by concentrated sheet flow coming off the roof. Foundation plantings can reduce the physical impact of water on the soil and provide a subsurface matrix of roots that encourage infiltration. These plantings must be sturdy enough to tolerate the heavy runoff sheet flows, and periodic soil saturation.

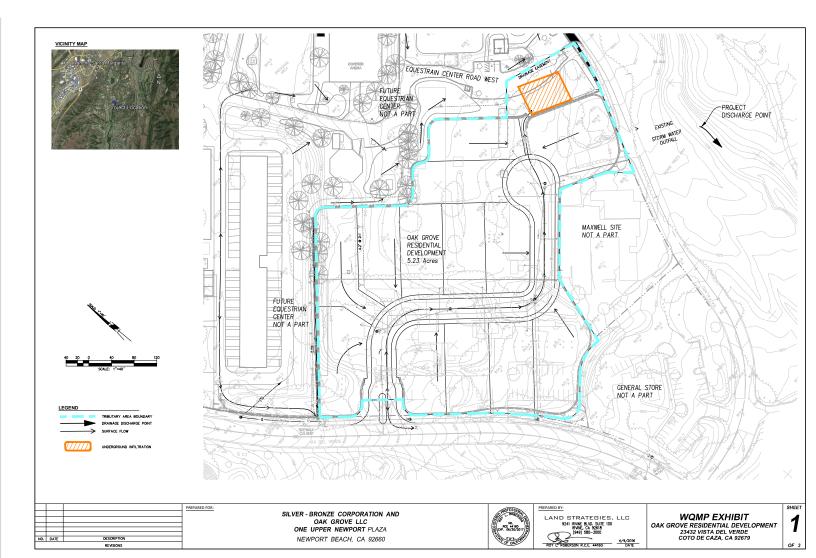
Redeveloping Existing Installations

Various jurisdictional stormwater management and mitigation plans (SUSMP, WQMP, etc.) define "redevelopment" in terms of amounts of additional impervious area, increases in gross floor area and/or exterior construction, and land disturbing activities with structural or impervious surfaces. The definition of "redevelopment" must be consulted to determine whether or not the requirements for new development apply to areas intended for redevelopment. If the definition applies, the steps outlined under "designing new installations" above should be followed.

Supplemental Information

Examples

- City of Ottawa's Water Links Surface -Water Quality Protection Program
- City of Toronto Downspout Disconnection Program
- City of Boston, MA, Rain Barrel Demonstration Program


Other Resources

Hager, Marty Catherine, Stormwater, "Low-Impact Development", January/February 2003. www.stormh2o.com

Low Impact Urban Design Tools, Low Impact Development Design Center, Beltsville, MD. www.lid-stormwater.net

Start at the Source, Bay Area Stormwater Management Agencies Association, 1999 Edition

Attachment B
WQMP Exhibit

Attachment C HCOC Calculations

Predeveloped																																						
Area		Slope	e Soil %		Area																																	
Number	(acre)	Slope	%	Α	С	Α		С		Total																												
		0 to 5	30%			0.07	2.77	0.29	10.64																													
A-1	1.22	5 to10	30%	200/	80%	0.07	0.46	0.29	3.45	1.22																												
H-1	1.22	10 to 15	20%	20/0	80%	0.05	0.82	0.20	2.99	1.22																												
		15 and up	20%			0.05	1.31	0.20	2.51																													
		0 to 5	25%			0.05		0.49																														
۸ ٦	2.18	5 to10	20%	10%	90%	0.04		0.39		2.18																												
A-2 2.1	2.10	10 to 15	15%		10%	10%	90%	0.03		0.29		2.10																										
		15 and up	40%		0.09		0.78																															
A-3		0 to 5 50%			1.48		0.63																															
	4.22	5 to10	5%	70%	30%	0.15		0.06		4.22																												
A-3	4.22	10 to 15	15%			.	%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	30%	0.44		0.19		4.22
		15 and up	30%						0.89		0.38																											
		0 to 5	60%			0.86		3.44																														
A-4	7.17	5 to10	5%	20%	80%	0.07		0.29		7.17																												
A-4	/.1/	10 to 15	15%	20%	80%	0.22		0.86		/.1/																												
		15 and up	20%			0.29		1.15																														
		0 to 5	60%			0.30		5.79																														
A-5	10.15	5 to10	25%	5%	95%	0.13		2.41		10.15																												
	10.15	10 to 15	15%	5%	95%	0.08		1.45		10.15																												
		15 and up	0%			0.00		0.00																														
Total = 24.94							24.94																															

Developed													
Area		Slope		Soil %		Area							
Number	(acre)	Slope	%	Α	С	Α		С		Total			
		0 to 5	30%			0.07	2.71	0.29	9.55				
A-1	1.22	5 to10	30%	20%	80%	0.07	0.44	0.29	2.99	1.22			
A-1	1.22	10 to 15	20%	20%	00%	0.05	0.80	0.20	2.71	1.22			
		15 and up	20%			0.05	1.31	0.20	2.51				
		0 to 5	25%			0.05		0.49					
A-2	2.18	5 to10	20%	100/	90%	0.04		0.39		2.18			
A-2	2.10	10 to 15	15%	10%	90%	0.03		0.29		2.10			
		15 and up	40%			0.09		0.78					
		0 to 5	50%			1.48		0.63					
	4.22	5 to10	5%	70%	700/ 200/	200/	0.15		0.06		4 22		
A-3	4.22	10 to 15	15%		30%	0.44		0.19		4.22			
		15 and up	30%			0.89		0.38					
		0 to 5	60%			0.86		3.44					
A-4	7.17	5 to10	5%	20% 8	200/	200/	200/	200/ 000/	0.07		0.29		7.17
A-4	7.17	10 to 15	15%		80%	0.22		0.86		7.17			
		15 and up	20%			0.29		1.15					
		0 to 5	60%			0.25		4.69					
A-5	8.23	5 to10	25%	5%	95%	0.10		1.95		8.23			
A-5	0.23	10 to 15	15%	3%	95%	0.06		1.17		0.23			
		15 and up	0%			0.00		0.00					
		0 to 5 Imp	41%			0.32		1.82					
В	5.23	0 to 5 Perv	59%	150/	OE 0/	0.46		2.62		5.23			
R	5.23			15%	05%	0.00		0.00		3.23			
						0.00		0.00					
Total =							28.25						

SOHM PROJECT REPORT

General Model Information

Project Name: Groves 11292017

Site Name: CEP

Site Address: Coto OC

City: Coto De Caza

Report Date: 12/2/2017

Gage: Trabuco Canyon

Data Start: 10/01/1958
Data End: 09/30/2005
Timestep: 15 Minute
Precip Scale: 1.000

Version Date: 2017/03/20

POC Thresholds

Low Flow Threshold for POC1: 10 Percent of the 2 Year

High Flow Threshold for POC1: 10 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre A,Open Brush,Flat 2.71 A,Open Brush,Mod 0.46 A, Open Brush, Steep 0.82 A,Open Brush,VSteep C,Open Brush,Flat 1.31 10.64 C,Open Brush,Mod 3.45 C,Open Brush,Steep 2.99 C,Open Brush,VSteep 2.56

Pervious Total 24.94

Impervious Land Use acre

Impervious Total 0

Basin Total 24.94

Element Flows To:

Surface Interflow Groundwater

Channel 1 Channel 1

Mitigated Land Use

Basin 1

No Bypass:

GroundWater: No

Pervious Land Use acre A,Open Brush,Flat 2.71 A,Open Brush,Mod A,Open Brush,Steep 0.44 8.0 A,Open Brush,VSteep 1.31 C,Open Brush,Flat 9.55 C,Open Brush,Mod 2.99 C,Open Brush,Steep 2.71 C,Open Brush,VSteep 2.51 A, Urban, Flat (0-5%) 0.46 C,Urban,Flat(0-5%) 2.63

Pervious Total 26.11

Impervious Land Use acre Impervious,Flat(0-5) 2.14

2.14 Impervious Total

Basin Total 28.25

Element Flows To:

Surface Interflow

Groundwater Vault 1 Vault 1

Routing Elements Predeveloped Routing

Channel 1

Bottom Length: 100.00 ft.
Bottom Width: 10.00 ft.
Manning's n: 0.03
Channel bottom slope 1: 0.03 To 1
Channel Left side slope 0: 3 To 1
Channel right side slope 2: 3 To 1

Infiltration On

Infiltration rate: 0.5
Infiltration safety factor: 1
Total Volume Infiltrated (ac-ft.):

Total Volume Infiltrated (ac-ft.):

Total Volume Through Riser (ac-ft.):

438.465
Total Volume Through Facility (ac-ft.):

Percent Infiltrated:

Total Precip Applied to Facility:

Total Evap From Facility:

0

Discharge Structure

Riser Height: 0 ft. Riser Diameter: 0 in.

Element Flows To:

Outlet 1 Outlet 2

Channel Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.023	0.000	0.000	0.000
0.0889	0.024	0.002	1.534	0.011
0.1778	0.025	0.004	4.911	0.011
0.2667	0.026	0.006	9.738	0.011
0.3556	0.027	0.009	15.87	0.011
0.4444	0.029	0.011	23.25	0.011
0.5333	0.030	0.014	31.83	0.011
0.6222	0.031	0.017	41.59	0.011
0.7111	0.032	0.019	52.51	0.011
0.8000	0.034	0.022	64.60	0.011
0.8889	0.035	0.025	77.86	0.011
0.9778	0.036	0.029	92.29	0.011
1.0667	0.037	0.032	107.9	0.011
1.1556	0.038	0.035	124.7	0.011
1.2444	0.040	0.039	142.7	0.011
1.3333	0.041	0.042	161.9	0.011
1.4222	0.042	0.046	182.4	0.011
1.5111	0.043	0.050	204.1	0.011
1.6000	0.045	0.054	227.0	0.011
1.6889	0.046	0.058	251.3	0.011
1.7778	0.047	0.062	276.9	0.011
1.8667	0.048	0.066	303.7	0.011
1.9556	0.050	0.071	332.0	0.011
2.0444	0.051	0.075	361.5	0.011
2.1333	0.052	0.080	392.5	0.011
2.2222	0.053	0.085	424.8	0.011
2.3111	0.054	0.089	458.5	0.011

7.5556	0.127	0.568	5589.	0.011
7.6444	0.128	0.579	5740.	0.011
7.7333	0.130	0.591	5893.	0.011
7.8222	0.131	0.602	6048.	0.011
7.9111	0.132	0.614	6206.	0.011
8.0000	0.133	0.626	6367.	0.011
8.0889	0.135	0.638	6530.	0.011

Mitigated Routing

Vault 1

 Width:
 58 ft.

 Length:
 70 ft.

 Depth:
 14.5 ft.

Infiltration On

Infiltration rate: 1.5
Infiltration safety factor: 1

Total Volume Infiltrated (ac-ft.):

Total Volume Through Riser (ac-ft.):

Total Volume Through Facility (ac-ft.):

Percent Infiltrated:

Total Precip Applied to Facility:

Total Evap From Facility:

289.12

330.148

619.268

46.69

Total Precip Applied to Facility:

0

Discharge Structure

Riser Height: 12 ft. Riser Diameter: 20 in.

Notch Type: Rectangular Notch Width: 0.280 ft. Notch Height: 7.000 ft.

Orifice 1 Diameter: 5 in. Elevation:2 ft. Orifice 2 Diameter: 5 in. Elevation:3 ft. Orifice 3 Diameter: 6 in. Elevation:4 ft.

Element Flows To:

Outlet 1 Outlet 2

Channel 1

Vault Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.093	0.000	0.000	0.000
0.1611	0.093	0.015	0.000	0.141
0.3222	0.093	0.030	0.000	0.141
0.4833	0.093	0.045	0.000	0.141
0.6444	0.093	0.060	0.000	0.141
0.8056	0.093	0.075	0.000	0.141
0.9667	0.093	0.090	0.000	0.141
1.1278	0.093	0.105	0.000	0.141
1.2889	0.093	0.120	0.000	0.141
1.4500	0.093	0.135	0.000	0.141
1.6111	0.093	0.150	0.000	0.141
1.7722	0.093	0.165	0.000	0.141
1.9333	0.093	0.180	0.000	0.141
2.0944	0.093	0.195	0.208	0.141
2.2556	0.093	0.210	0.343	0.141
2.4167	0.093	0.225	0.437	0.141
2.5778	0.093	0.240	0.515	0.141
2.7389	0.093	0.255	0.583	0.141
2.9000	0.093	0.270	0.643	0.141
3.0611	0.093	0.285	0.866	0.141
3.2222	0.093	0.300	1.069	0.141
3.3833	0.093	0.315	1.218	0.141
3.5444	0.093	0.330	1.343	0.141
3.7056	0.093	0.345	1.455	0.141
3.8667	0.093	0.360	1.558	0.141
4.0278	0.093	0.375	1.816	0.141

13.533	0.093	1.261	36.59	0.141
13.694	0.093	1.276	37.20	0.141
13.856	0.093	1.291	37.79	0.141
14.017	0.093	1.306	38.35	0.141
14.178	0.093	1.321	38.90	0.141
14.339	0.093	1.336	39.42	0.141
14.500	0.093	1.351	39.93	0.141
14.661	0.096	1.364	40.43	0.194

Channel 1

Bottom Length: 100.00 ft.
Bottom Width: 10.00 ft.
Manning's n: 0.03
Channel bottom slope 1: 0.03 To 1

Channel Left side slope 0: 3 To 1
Channel right side slope 2: 3 To 1

Infiltration Ŏn

Infiltration rate: 0.5
Infiltration safety factor: 1
Total Volume Infiltrated (ac-ft.):

Total Volume Infiltrated (ac-ft.):

Total Volume Through Riser (ac-ft.):

328.345
Total Volume Through Facility (ac-ft.):

Percent Infiltrated:

Total Precip Applied to Facility:

Total Evap From Facility:

0

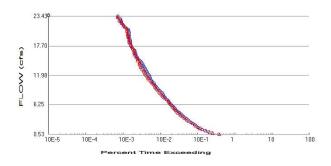
Discharge Structure

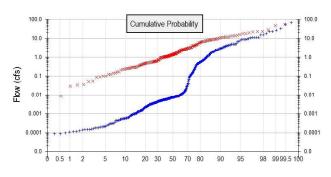
Riser Height: 0 ft. Riser Diameter: 0 in.

Element Flows To:

Outlet 1 Outlet 2

Channel Hydraulic Table


Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	
0.0000	0.023	0.000	0.000	0.000
0.0889	0.024	0.002	1.534	0.011
0.1778	0.025	0.004	4.911	0.011
0.2667	0.026	0.006	9.738	0.011
0.3556	0.027	0.009	15.87	0.011
0.4444	0.029	0.011	23.25	0.011
0.5333	0.030	0.014	31.83	0.011
0.6222	0.031	0.017	41.59	0.011
0.7111	0.032	0.019	52.51	0.011
0.8000	0.034	0.022	64.60	0.011
0.8889	0.035	0.025	77.86	0.011
0.9778	0.036	0.029	92.29	0.011
1.0667	0.037	0.032	107.9	0.011
1.1556	0.038	0.035	124.7	0.011
1.2444	0.040	0.039	142.7	0.011
1.3333	0.041	0.042	161.9	0.011
1.4222	0.042	0.046	182.4	0.011
1.5111	0.043	0.050	204.1	0.011
1.6000	0.045	0.054	227.0	0.011
1.6889	0.046	0.058	251.3	0.011
1.7778	0.047	0.062	276.9	0.011
1.8667	0.048	0.066	303.7	0.011
1.9556	0.050	0.071	332.0	0.011
2.0444	0.051	0.075	361.5	0.011
2.1333	0.052	0.080	392.5	0.011
2.2222	0.053	0.085	424.8	0.011
2.3111	0.054	0.089	458.5	0.011
2.4000	0.056	0.094	493.7	0.011
2.4889	0.057	0.099	530.3	0.011
2.5778	0.058	0.105	568.4	0.011
2.6667	0.059	0.110	607.9	0.011


 7.9111
 0.132
 0.614
 6206.
 0.011

 8.0000
 0.133
 0.626
 6367.
 0.011

 8.0889
 0.135
 0.638
 6530.
 0.011

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 24.94 Total Impervious Area: 0

Mitigated Landuse Totals for POC #1
Total Pervious Area: 26.11
Total Impervious Area: 2.14

Flow Frequency Method: Cunnane

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 5.258344

 5 year
 12.215375

 10 year
 23.430243

 25 year
 46.493653

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 9.248281

 5 year
 16.19486

 10 year
 22.617314

 25 year
 40.307498

Duration Flows

The Facility PASSED

Flow(cfs) 0.5258 0.7572 0.9885 1.2199 1.4513 1.6826 1.9140 2.1453 2.3767 2.6081 2.8394 3.0708 3.3021 3.5335 3.7648 3.9962 4.2276 4.4589 4.6903	Predev 5959 4102 3205 2635 2235 1928 1679 1504 1374 1233 1099 988 914 839 756 700 642 596 542	Mit 6506 4272 3487 2802 2235 1902 1702 1542 1403 1259 1115 964 862 779 714 647 582 541 497	Percentage 109 104 108 106 100 98 101 102 102 102 102 101 97 94 92 94 92 94 92 90 90	Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas
4.9216 5.1530 5.3843 5.6157 5.8471 6.0784 6.3098 6.5411 6.7725 7.0038 7.2352 7.4666 7.6979 7.9293 8.1606 8.3920 8.6234 8.8547 9.0861 9.3174 9.5488 9.7801 10.0115	498 452 426 398 374 345 320 299 280 269 251 234 223 211 203 193 183 171 160 149 138 128 121	463 423 399 379 354 330 315 296 280 270 243 222 207 194 185 176 164 152 145 134 128 121 116	92 93 93 95 94 95 98 100 100 96 94 92 91 91 89 88 90 89 92 94 95	Pass Pass Pass Pass Pass Pass Pass Pass
10.2429 10.4742 10.7056 10.9369 11.1683 11.3996 11.6310 11.8624 12.0937 12.3251 12.5564	117 113 104 97 94 89 87 85 82 77	109 102 99 91 83 79 78 73 68 65 63	93 90 95 93 88 88 89 85 82 84	Pass Pass Pass Pass Pass Pass Pass Pass

12.7878	72	60	83	Pass
13.0191	69	59	85	Pass
13.2505	66	54	81	Pass
13.4819	63	51	80	Pass
13.7132	60 57	50	83	Pass
13.9446 14.1759	57 56	48 46	84 82	Pass Pass
14.1739	53	46	86	Pass
14.6387	51	46	90	Pass
14.8700	48	41	85	Pass
15.1014	44	41	93	Pass
15.3327	41	41	100	Pass
15.5641	39	38	97	Pass
15.7954	37	37	100	Pass
16.0268 16.2582	36 36	34 34	94 94	Pass Pass
16.4895	35	33	94	Pass
16.7209	34	33	9 7	Pass
16.9522	33	32	96	Pass
17.1836	30	30	100	Pass
17.4149	28	30	107	Pass
17.6463	27	29	107	Pass
17.8777 18.1090	27 26	29 27 27	100 103	Pass Pass
18.3404	26 26	27 25	96	Pass
18.5717	26	24	92	Pass
18.8031	<u> 2</u> 6	24	92	Pass
19.0344	25	24	96	Pass
19.2658	24	24	100	Pass
19.4972	24	23	95	Pass
19.7285	24	22	91	Pass
19.9599 20.1912	24 24	22 22	91 91	Pass Pass
20.1912	24	22	91	Pass
20.6540	23	21	91	Pass
20.8853	23	21 21	91	Pass
21.1167	20	21	104	Pass
21.3480	18	19	105	Pass
21.5794	17	18	105	Pass
21.8107 22.0421	16 15	17 16	106 106	Pass
22.2735	15	15	100	Pass Pass
22.5048	15	14	93	Pass
22.7362	14	13	92	Pass
22.9675	14	13	92	Pass
23.1989	12	12	100	Pass
23.4302	12	12	100	Pass

Water Quality

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

Mitigated Schematic

Predeveloped UCI File

RUN

```
GLOBAL
  WWHM4 model simulation
  START 1958 10 01 END 2005 09 30 RUN INTERP OUTPUT LEVEL 3 0
  RESUME 0 RUN 1
                                                     UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#> <----->***
<-ID->
WDM
            26 Groves 11292017.wdm
MESSU
             25 PreGroves 11292017.MES
                 PreGroves 11292017.L61
             27
             28
                   PreGroves 11292017.L62
             30 POCGroves 112920171.dat
END FILES
      EQUENCE
NGRP
PERLND 5
PERLND 7
PERLND 8
PERLND 29
PERLND 30
PERLND 31
PERLND 32
RCHRES 1
COPY 501
DISPLY 1
OPN SEQUENCE
                          INDELT 00:15
    INGRP
    END INGRP
END OPN SEQUENCE
DISPLY
  DISPLY-INFO1
   # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
1 Channel 1 MAX 1 2 30 0
  END DISPLY-INFO1
END DISPLY
COPY
  TIMESERIES
  # - # NPT NMN ***
1 1 1
501 1 1
  501
  END TIMESERIES
END COPY
GENER
  OPCODE
   # # OPCD ***
  END OPCODE
  PARM
               K ***
    #
  END PARM
END GENER
PERLND
  GEN-INFO
    <PLS ><-----Name---->NBLKS Unit-systems Printer ***
                                    User t-series Engl Metr ***
                                                    in out
   in out

5 A,Open Brush,Flat 1 1 1 1 27

6 A,Open Brush,Mod 1 1 1 1 27

7 A,Open Brush,Steep 1 1 1 1 27

8 A,Open Brush,VSteep 1 1 1 1 27

29 C,Open Brush,Flat 1 1 1 1 27

30 C,Open Brush,Mod 1 1 1 1 27

31 C,Open Brush,Steep 1 1 1 1 27

32 C,Open Brush,VSteep 1 1 1 27
                                                                        Ω
                                                                      0
                                                                        0
                                                                       0
```

3.00														
ACTIVITY	ATMP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	****** SNOW 0 0 0 0 0 0 0 0 0 0		Active SED 0 0 0 0 0 0 0	Sect PST 0 0 0 0 0 0							***** TRAC 0 0 0 0 0 0 0 0 0 0 0	***	
PRINT-IN														
<pls> # - # 5 6 7 8 29 30 31 32 END PRIN</pls>	ATMP 0 0 0 0 0 0 0 0	SNOW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		** Pri SED 0 0 0 0 0 0 0	nt-f PST 0 0 0 0 0 0 0			****** MSTL 0 0 0 0 0 0 0 0 0 0 0 0 0						PYR ***** 9 9 9 9 9 9 9
PWAT-PARI	PWAS CSNO 0 0 0 0 0 0	RTOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	riabl UZFG 0 0 0 0 0 0	e mont VCS 1 1 1 1 1 1	chly VUZ 0 0 0 0 0 0		neter VIFW 0 0 0 0 0			JS *: INFC 0 0 0 0 0		***		
PWAT - PAR	M2													
<pls> # - # 5 6 7 8 29 30 31 32 END PWAT</pls>	***F(- PARM2	OREST 0 0 0 0 0 0 0 0 0 0		Dut inf LZSN 5.2 4.8 4.5 4.2 4.8 4.5 4.2	C	FILT 0.09	2	LSUR 400 350 300 250 400 350 300 250		SLSUR 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2		CVARY 0.8 0.8 0.8 0.8 0.8 0.8 0.8		AGWRC 0.955 0.955 0.955 0.955 0.955 0.955 0.955
PWAT-PARI <pls> # - # 5 6 7 8 29 30 31 32 END PWAT</pls>	***PI	40 40 40 40 40 40 40 40		out inf TMIN 35 35 35 35 35 35 35		Part 3 IFEXP 2 2 2 2 2 3 3 3 3		NFILD 2 2 2 2 2 2 2 2 2 2 2	*** DI	EEPFR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B₽	ASETP 0.03 0.03 0.03 0.03 0.03 0.03 0.03	A	GWETP 0 0 0 0 0 0
PWAT-PARI <pls> # - #</pls>	I	PWATER CEPSC		ıt info UZSN		rt 4 NSUR	-	INTFW		IRC	I	ZZETP	* * * * * *	

```
      0
      0.8
      0.25
      4
      0.7

      0
      0.65
      0.25
      3.2
      0.45

      0
      0.45
      0.25
      2.6
      0.4

      0
      0.25
      0.25
      1.3
      0.3

      0
      0.8
      0.25
      2
      0.7

      0
      0.65
      0.25
      1.2
      0.45

      0
      0.45
      0.25
      0.8
      0.4

      0
      0.25
      0.25
      0.4
      0.3

   6
   7
   8
   29
   30
                                                                  0
   31
  32
  END PWAT-PARM4
 MON-LZETPARM
               PWATER input info: Part 3
   <PLS >
           JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ***
    # - #
           5
           7
          8
          29
   30
   31
   32
  END MON-LZETPARM
 MON-INTERCEP
              PWATER input info: Part 3
   <PLS >
    # - # JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ***
        6
          7
          0.12\ 0.12\ 0.12\ 0.12\ 0.12\ 0.12\ 0.12\ 0.12\ 0.12\ 0.12\ 0.12\ 0.12
   8
          0.12\ 0.12\ 0.12\ 0.12\ 0.12\ 0.12\ 0.12\ 0.12\ 0.12\ 0.12\ 0.12\ 0.12
   29
          30
          31
          END MON-INTERCEP
  PWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
          ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
        ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***

# *** CEPS SURS UZS IFWS LZS AGWS GWVS

0 0 0.08 0 1.04 0.3 0.01

0 0 0.065 0 0.96 0.3 0.01

0 0 0.045 0 0.9 0.3 0.01

0 0 0.025 0 0.84 0.3 0.01

0 0 0.08 0 0.96 0.3 0.01

0 0 0.08 0 0.96 0.3 0.01

0 0 0.065 0 0.9 0.3 0.01

0 0 0.065 0 0.9 0.3 0.01

0 0 0.065 0 0.9 0.3 0.01

AT-STATE1
   5
   6
   7
   8
   29
   30
   31
  32
  END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
   <PLS ><-----> Unit-systems Printer ***
    # - # User t-series Engl Metr ***
                                    in out
 END GEN-INFO
  *** Section IWATER***
 ACTIVITY
   <PLS > ******** Active Sections *********************
   # - # ATMP SNOW IWAT SLD IWG IQAL ***
  END ACTIVITY
  PRINT-INFO
   <ILS > ******* Print-flags ******* PIVL PYR
    # - # ATMP SNOW IWAT SLD IWG IQAL *******
 END PRINT-INFO
  TWAT-PARM1
    <PLS > IWATER variable monthly parameter value flags ***
```

```
# - # CSNO RTOP VRS VNN RTLI ***
  END IWAT-PARM1
  IWAT-PARM2
   <PLS > IWATER input info: Part 2 ***
# - # *** LSUR SLSUR NSUR RETSC
  END IWAT-PARM2
  IWAT-PARM3
            IWATER input info: Part 3
  <PLS >
   END IWAT-PARM3
  IWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
   # - # *** RETS SURS
 END IWAT-STATE1
END IMPLND
SCHEMATIC
                       <--Area--> <-Target-> MBLK ***
<-factor-> <Name> # Tbl# ***
<-Source->
<Name> #
                              2.71 RCHRES 1 2
2.71 RCHRES 1 3
0.46 RCHRES 1 2
0.46 RCHRES 1 2
0.82 RCHRES 1 2
0.82 RCHRES 1 3
1.31 RCHRES 1 3
1.31 RCHRES 1 2
1.31 RCHRES 1 3
10.64 RCHRES 1 3
10.64 RCHRES 1 2
13.45 RCHRES 1 3
2.99 RCHRES 1 3
2.99 RCHRES 1 3
2.99 RCHRES 1 3
2.56 RCHRES 1 3
2.56 RCHRES 1 3
Basin 1***
PERLND 5
PERLND 5
PERLND 6
PERLND 6
PERLND 7
PERLND 7
PERLND 8
PERLND 8
PERLND 29
PERLND 29
PERLND 30
PERLND 30
PERLND 31
PERLND 31
PERLND 32
PERLND 32
*****Routing*****
                               1 COPY 501 17
RCHRES 1
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
   RCHRES Name Nexits Unit Systems Printer
   # - #<----><---> User T-series Engl Metr LKFG
                              in out
2 1 1 1 28 0 1
                                                                        * * *
   1 Channel 1
 END GEN-INFO
  *** Section RCHRES***
   # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
   1 1 0 0 0 0 0 0 0 0 0
  END ACTIVITY
```

```
PRINT-INFO
      <PLS > ******** Print-flags ******** PIVL PYR
      # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR
      1 4 0 0 0 0 0 0 0 0 0 1 9
   END PRINT-INFO
   HYDR-PARM1
     RCHRES Flags for each HYDR Section ***

# - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG possible exit *** possible exit possible exit ***

1 0 1 0 0 4 5 0 0 0 0 0 0 0 0 2 2 2 2 2
   END HYDR-PARM1
   HYDR-PARM2
    #- # FTABNO LEN DELTH STCOR KS DB50
   <----><----><---->
    1
             1 0.02 0.0 0.0 0.5 0.0
   END HYDR-PARM2
   HYDR-INIT
     RCHRES Initial conditions for each HYDR section
     <----><---> <---><--->
    1 0
                                    4.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
   END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
   FTABLE
    91 5
  Depth Area Volume Outflow1 Outflow2 Velocity Travel Time***
(ft) (acres) (acre-ft) (cfs) (cfs) (ft/sec) (Minutes)***

0.000000 0.022957 0.000000 0.000000 0.000000

0.088889 0.024182 0.002095 1.534328 0.011574

0.177778 0.025408 0.004299 4.911125 0.011574

0.266667 0.026634 0.006612 9.738430 0.011574

0.355556 0.027860 0.009034 15.87713 0.011574
   0.444444 0.029086 0.011565 23.25577 0.011574
   0.533333 0.030313 0.014205 31.83456 0.011574
   0.622222 0.031539 0.016954 41.59160 0.011574
   0.711111 \quad 0.032766 \quad 0.019812 \quad 52.51624 \quad 0.011574

      0.800000
      0.033992
      0.022779
      64.60537
      0.011574

      0.888889
      0.035219
      0.025855
      77.86115
      0.011574

      0.977778
      0.036446
      0.029040
      92.28957
      0.011574

      1.066667
      0.037673
      0.032334
      107.8995
      0.011574

   1.155556 0.038901 0.035738 124.7019 0.011574
   1.244444 0.040128 0.039250 142.7094 0.011574
   1.333333 0.041355 0.042872 161.9361 0.011574
   1.422222 0.042583 0.046602 182.3968 0.011574
   1.511111 0.043811 0.050442 204.1073 0.011574

    1.600000
    0.045039
    0.054391
    227.0841
    0.011574

    1.688889
    0.046267
    0.058449
    251.3440
    0.011574

    1.777778
    0.047495
    0.062616
    276.9042
    0.011574

    1.866667
    0.048723
    0.066892
    303.7825
    0.011574

    1.955556
    0.049951
    0.071278
    331.9967
    0.011574

   2.044444 0.051180 0.075773 361.5648 0.011574
   2.222222 0.053637 0.085090 424.8357 0.011574
   2.311111 0.054866 0.089912 458.5753 0.011574
   2.400000 \quad 0.056095 \quad 0.094844 \quad 493.7422 \quad 0.011574

      2.488889
      0.057325
      0.099885
      530.3550
      0.011574

      2.577778
      0.058554
      0.105035
      568.4321
      0.011574

      2.666667
      0.059783
      0.110294
      607.9921
      0.011574

      2.755556
      0.061013
      0.115663
      649.0536
      0.011574

      2.844444
      0.062243
      0.121141
      691.6350
      0.011574
```

```
3.200000 0.067163 0.144146 877.5290 0.011574
  3.288889 0.068393 0.150171 927.9866 0.011574
   3.377778 0.069624 0.156305 980.0744 0.011574
   3.466667 \quad 0.070854 \quad 0.162548 \quad 1033.811 \quad 0.011574

      3.555556
      0.072085
      0.168901
      1089.213
      0.011574

      3.644444
      0.073316
      0.175363
      1146.301
      0.011574

      3.733333
      0.074547
      0.181935
      1205.091
      0.011574

      3.822222
      0.075778
      0.188616
      1265.602
      0.011574

      3.911111
      0.077009
      0.195407
      1327.852
      0.011574

  4.000000 0.078241 0.202307 1391.858 0.011574
   4.088889 0.079472 0.209316 1457.638 0.011574
   4.177778 0.080704 0.216435 1525.210 0.011574
   4.266667 0.081936 0.223664 1594.592 0.011574
  4.355556 0.083167 0.231001 1665.801 0.011574
  4.444444 \quad 0.084400 \quad 0.238449 \quad 1738.855 \quad 0.011574

      4.533333
      0.085632
      0.246006
      1813.771
      0.011574

      4.622222
      0.086864
      0.253672
      1890.566
      0.011574

      4.711111
      0.088096
      0.261448
      1969.259
      0.011574

      4.800000
      0.089329
      0.269334
      2049.865
      0.011574

      4.888889
      0.090562
      0.277329
      2132.403
      0.011574

      4.977778
      0.091795
      0.285434
      2216.889
      0.011574

   5.066667 0.093028 0.293648 2303.341 0.011574
   5.155556 0.094261 0.301972 2391.775 0.011574
   5.244444 0.095494 0.310406 2482.209 0.011574

      5.333333
      0.096727
      0.318949
      2574.659
      0.011574

      5.422222
      0.097961
      0.327602
      2669.142
      0.011574

      5.511111
      0.099194
      0.336364
      2765.676
      0.011574

      5.600000
      0.100428
      0.345236
      2864.276
      0.011574

   5.688889 0.101662 0.354218 2964.959 0.011574
   5.777778 0.102896 0.363309 3067.742 0.011574
   5.866667 0.104130 0.372511 3172.641 0.011574
  5.955556 0.105364 0.381821 3279.673 0.011574
   6.044444 0.106599 0.391242 3388.854 0.011574
  6.577778 0.114008 0.450070 4089.987 0.011574
   6.666667 0.115243 0.460259 4214.668 0.011574
   6.755556 0.116479 0.470558 4341.627 0.011574
   6.844444 0.117714 0.480967 4470.880 0.011574
   6.933333 \quad 0.118950 \quad 0.491485 \quad 4602.444 \quad 0.011574
  7.022222 0.120186 0.502113 4736.333 0.011574
7.111111 0.121422 0.512851 4872.565 0.011574
7.200000 0.122658 0.523699 5011.154 0.011574
7.288889 0.123894 0.534657 5152.116 0.011574
   7.377778 0.125131 0.545725 5295.467 0.011574
   7.466667 0.126367 0.556903 5441.222 0.011574
   7.555556 0.127604 0.568190 5589.397 0.011574
  7.644444 0.128840 0.579588 5740.007 0.011574
  7.733333 0.130077 0.591095 5893.069 0.011574
   7.822222 \quad 0.131314 \quad 0.602713 \quad 6048.596 \quad 0.011574
                7.911111
   8.000000
  END FTABLE 1
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSqap<--Mult-->Tran <-Target vols> <-Grp> <-Member->
          # <Name> # tem strg<-factor->strg <Name> # #
<Name>
                                                                                                 <Name> # #
                          ENGL 1
WDM
             2 PREC
                                                                PERLND 1 999 EXTNL
                                                                                                 PREC
                                         1
                                                                IMPLND 1 999 EXTNL
MDM
             2 PREC
                             ENGL
                                                                                                 PREC
MDM
             1 EVAP
                             ENGL
                                         1
                                                                PERLND
                                                                             1 999 EXTNL
                                                                                                 PETINP
                                                                             1 999 EXTNL
MDM
             1 EVAP
                             ENGL
                                          1
                                                                IMPLND
                                                                                                 PETINP
```

Groves 11292017 12/2/2017 10:33:11 AM Page 26

END EXT SOURCES

EXT TARGETS			
<-Volume-> <-Grp>	<-Member-> <mult>Tran</mult>	<-Volume-> < Memb	
<name> #</name>	<name> # #<-factor->strg</name>	<name> # <name< td=""><td>e> tem strg strg***</td></name<></name>	e> tem strg strg***
RCHRES 1 HYDR	RO 1 1 1	WDM 1000 FLOW	ENGL REPL
RCHRES 1 HYDR	0 1 1 1	WDM 1001 FLOW	ENGL REPL
RCHRES 1 HYDR	0 2 1 1	WDM 1002 FLOW	ENGL REPL
RCHRES 1 HYDR	STAGE 1 1 1	WDM 1003 STAG	ENGL REPL
COPY 501 OUTPUT	MEAN 1 1 48.4	WDM 501 FLOW	ENGL REPL
END EXT TARGETS			
MASS-LINK			
<volume> <-Grp></volume>	<-Member-> <mult></mult>	<target></target>	<-Grp> <-Member->***
<name></name>	<name> # #<-factor-></name>	<name></name>	<name> # #***</name>
MASS-LINK	2		
PERLND PWATER	SURO 0.083333	RCHRES	INFLOW IVOL
END MASS-LINK	2		
MASS-LINK	3		
PERLND PWATER	IFWO 0.083333	RCHRES	INFLOW IVOL
END MASS-LINK	3		
MASS-LINK	17		
RCHRES OFLOW		COPY	INPUT MEAN
END MASS-LINK	17		

END MASS-LINK

END RUN

Mitigated UCI File

RUN

```
GLOBAL
 WWHM4 model simulation
 START 1958 10 01 END 2005 09 30 RUN INTERP OUTPUT LEVEL 3 0
 RESUME 0 RUN 1
                                       UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#>
             <-----File Name---->***
<-ID->
MDM
         26 Groves 11292017.wdm
MESSU
         25
             MitGroves 11292017.MES
          27
              MitGroves 11292017.L61
          28 MitGroves 11292017.L62
30 POCGroves 112920171.dat
END FILES
    QUENCE
IGRP
PERLND 5
PERLND 6
VID 7
8
OPN SEOUENCE
                   INDELT 00:15
   INGRP
           2
31
32
40
     PERLND
     PERLND
     PERLND
     PERLND
     PERLND
     PERLND
              57
               1
     IMPLND
               1
     RCHRES
               2
     RCHRES
     COPY
     COPY
              501
    DISPLY
               1
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
  # - # NPT NMN ***
  1 1 1
           1
 END TIMESERIES
END COPY
GENER
 OPCODE
  # # OPCD ***
 END OPCODE
 PARM
               K ***
 END PARM
END GENER
PERLND
 GEN-INFO
   <PLS ><----Name---->NBLKS Unit-systems Printer ***
                              User t-series Engl Metr ***
   # - #
                                      in out ***
        A, Open Brush, Flat 1 1 1 27
A, Open Brush, Mod 1 1 1 1 27
A, Open Brush, Steep 1 1 1 1 27
                                                    0
   5
                                                   0
   6
```

	A,Open C,Open C,Open C,Open A,Urba C,Urba EN-INFO ection PW	Brus Brus Brus Brus n,Fla	h,Flath,Modh,Steeh,VStet(0-555)	ep eep %)	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	27 27 27 27 27 27 27	0 0 0 0 0				
# - 5 6 7 8 29 30 31 32 49 57	ITY S > ***** # ATMP 0 0 0 0 0 0 0 0 0 CTIVITY			SED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sect PST 0 0 0 0 0 0 0			****** MSTL 0 0 0 0 0 0 0 0 0 0 0 0 0 0					***	
# - 5 6 7 8 29 30 31 32 49 57	- INFO S > ***** # ATMP 0 0 0 0 0 0 0 0 0 RINT-INFO	SNOW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		** Pr SED 0 0 0 0 0 0 0	int-f PST 0 0 0 0 0 0			******* MSTL 0 0 0 0 0 0 0 0 0 0 0 0 0					PIVL **** 1 1 1 1 1 1 1 1 1 1	PYR ***** 9 9 9 9 9 9
PWAT-1 <pls # - 5 6 7 8 29 30 31 32 49 57 END PV</pls 			riable UZFG 0 0 0 0 0 0 0 0 0 0	e mon VCS 1 1 1 1 1 1 1	thly VUZ 0 0 0 0 0 0		neter VIFW 0 0 0 0 0 0		e flaç VLE 1 1 1 1 1 1 1	JS ** INFC 0 0 0 0 0 0 0 0 0 0	HWT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	***		
PWAT-1 <pls # - 5 6 7 8 29 30 31 32 49 57 END PV</pls 			R inpi	ut in LZSN 5.2 4.8 4.5 4.2 4.8 4.5 4.6	C C	Part 2 IFILT 0.09 0.07 0.045 0.045 0.04 0.03 0.015 0.07	2	LSUR 400 350 300 250 400 350 300 250 400 400	·** [SLSUR 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05	I	XVARY 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0 0 0 0 0 0 0	GWRC .955 .955 .955 .955 .955 .955 .955

PWAT-PARM3 <pls> # - # ***P</pls>	PWATER in ETMAX P		Part 3 INFEXP 2	*** INFILD 2	DEEPFR	BASETP 0.03	AGWETP 0
6 7	4 0 4 0	35 35	2 2	2 2	0	0.03	0
8	40	35	2	2	0	0.03	0
29 30	4 0 4 0	35 35	3 3	2 2	0	0.03 0.03	0
31 32	4 0 4 0	35 35	3 3	2 2	0	0.03	0
49	40	35	2	2	0	0.03	0
57 END PWAT-PARM	40 3	35	3	2	0	0.03	0
PWAT-PARM4							
	PWATER inp [.] CEPSC	ut into: 1 UZSN	Part 4 NSUR	INTFW	IRC	LZETP	* * * * * *
5	0	0.8	0.25	4	0.7	0	
6 7	0 0	0.65 0.45	0.25 0.25	3.2 2.6	$0.45 \\ 0.4$	0	
8 29	0 0	0.25 0.8	0.25 0.25	1.3	0.3	0	
30	0	0.65	0.25	1.2	0.45	0	
31 32	0 0	0.45 0.25	0.25 0.25	0.8 0.4	0.4	0	
49	0	0.7	0.25	3	0.7	0	
57 END PWAT-PARM	0 4	0.7	0.25	3	0.7	0	
MON-LZETPARM							
<pls> # - # JAN</pls>	PWATER in	_		*** UL AUG S	SEP OCT	NOV DEC	***
5 0.4	0.4 0.4			55 0.55 0.			
6 0.4 7 0.4	$ \begin{array}{cccc} 0.4 & 0.4 \\ 0.4 & 0.4 \end{array} $		5 0.55 0. 5 0.55 0.				
8 0.4 29 0.4	0.4 0.4 0.4 0.4		5 0.55 0. 5 0.55 0.	55 0.55 0. 55 0.55 0.			
30 0.4	0.4 0.4	0.5 0.5	5 0.55 0.	55 0.55 0.	55 0.55	0.45 0.4	
31 0.4 32 0.4	$ \begin{array}{cccc} 0.4 & 0.4 \\ 0.4 & 0.4 \end{array} $			55 0.55 0. 55 0.55 0.			
49 0.5	0.5 0.5	0.6 0.6	5 0.65 0.	65 0.65 0.	65 0.65	0.55 0.5	
57 0.5 END MON-LZETP	0.5 0.5 ARM	0.6 0.6	5 0.65 0.	65 0.65 0.	65 0.65	0.55 0.5	
MON-INTERCEP		<u>+</u>	Don't 3	***			
<pls> # - # JAN</pls>	PWATER in				SEP OCT	NOV DEC	***
	0.12 0.12 0.12 0.12						
7 0.12	0.12 0.12	0.12 0.12	2 0.12 0.	12 0.12 0.	12 0.12	0.12 0.12	
	0.12 0.12 0.12 0.12						
30 0.12	0.12 0.12	0.12 0.13	2 0.12 0.	12 0.12 0.	12 0.12	0.12 0.12	
	0.12 0.12 0.12 0.12						
	0.12 0.12 0.12 0.12						
END MON-INTER		0.12 0.1.	2 0.12 0.	12 0.12 0.	12 0.12	0.12 0.12	
PWAT-STATE1							
<pls> ***</pls>						0.1 ded.de	
# - # ***	an from 19 CEPS	90 to end SURS	OI 1992 UZS	(pat 1-11- IFWS	-95) RUN LZS	AGWS	GWVS
5 6	0 0	0 0	0.08	0	1.04	0.3	0.01
7	0	0	0.065 0.045	0	0.96 0.9	0.3	0.01
8 29	0 0	0 0	0.025 0.08	0	0.84 0.96	0.3	0.01 0.01
30	0	0	0.065	0	0.9	0.3	0.01
31 32	0 0	0 0	0.045 0.025	0 0	0.84 0.8	0.3	0.01
49	0	0	0.07	0	1	0.3	0.01

```
0 0 0.07 0 0.92 0.3 0.01
  END PWAT-STATE1
END PERLND
IMPLND
  GEN-INFO
   <PLS ><-----> Unit-systems Printer ***
                              User t-series Engl Metr ***
   in out ***

1 Impervious,Flat(0-5) 1 1 27 0

IND GEN-INFO
  END GEN-INFO
  *** Section IWATER***
  ACTIVITY
   <PLS > ******** Active Sections **********************
    # - # ATMP SNOW IWAT SLD IWG IQAL ***
1 0 0 1 0 0 0
  END ACTIVITY
  PRINT-INFO
   <ILS > ******* Print-flags ******* PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL ********
1 0 0 4 0 0 0 1 9
  END PRINT-INFO
  IWAT-PARM1
    <PLS > IWATER variable monthly parameter value flags ***
    # - # CSNO RTOP VRS VNN RTLI ***
1 0 0 0 0 0
    1
  END IWAT-PARM1
  IWAT-PARM2
    <PLS >
   1
  END IWAT-PARM2
  IWAT-PARM3
   <PLS > IWATER input info: Part 3 ***
    # - # ***PETMAX PETMIN
1 0 0
   1
  END IWAT-PARM3
  IWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
    # - # *** RETS SURS
1 0 0
                          0
  END IWAT-STATE1
END IMPLND
SCHEMATIC
                           <--Area--> <-Target-> MBLK ***
<-factor-> <Name> # Tbl# ***
<-Source->
<Name> #
Basin 1***
                                   2.71 RCHRES 1
2.71 RCHRES 1
0.44 RCHRES 1
0.44 RCHRES 1
0.8 RCHRES 1
0.8 RCHRES 1
1.31 RCHRES 1
1.31 RCHRES 1
9.55 RCHRES 1
9.55 RCHRES 1
2.99 RCHRES 1
2.99 RCHRES 1
2.71 RCHRES 1
PERLND 5
PERLND 5
PERLND 6
PERLND 6
PERLND 7
PERLND 7
PERLND 8
PERLND
        8
                                                              3
PERLND 29
                                                              2
PERLND
       29
                                                              3
PERLND
        30
                                                              2
PERLND 30
                                                              3
                                                       1
                                    2.71 RCHRES 1
2.71 RCHRES 1
PERLND 31
                                                              2
PERLND 31
```

```
2.51 RCHRES 1
2.51 RCHRES 1
0.46 RCHRES 1
0.46 RCHRES 1
2.63 RCHRES 1
2.63 RCHRES 1
2.14 RCHRES 1
PERLND 32
PERLND 32
PERLND 49
PERLND 49
PERLND 57
PERLND 57
IMPLND 1
*****Routing****
RCHRES 1

    RCHRES
    2
    7

    COPY
    1
    17

    COPY
    501
    17

RCHRES 2
                         1
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
  RCHRES Name Nexits Unit Systems Printer
  # - #<----><---> User T-series Engl Metr LKFG
                                                     ***
                  2 1 1 1 28 0 1
2 1 1 1 28 0 1
                             in out
                                                     ***
  1 Vault 1
2 Channel 1
 END GEN-INFO
 *** Section RCHRES***
 ACTIVITY
  # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
  END ACTIVITY
 PRINT-INFO
  <PLS > ********* Print-flags ********* PIVL PYR
  # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ********
  1 4 0 0 0 0 0 0 0 0 0 0 1 9
2 4 0 0 0 0 0 0 0 0 0 1 9
 END PRINT-INFO
 HYDR - PARM1
  RCHRES Flags for each HYDR Section
  END HYDR-PARM1
 HYDR-PARM2
 # - # FTABNO LEN DELTH STCOR KS DB50
 <----><----><---->
  1 1 0.01 0.0 0.0 0.5 0.0 2 0.02 0.0 0.0 0.5 0.0
 END HYDR-PARM2
 HYDR-INIT
```

4.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS **FTABLES** FTABLE 91 Volume Outflow1 Outflow2 Velocity Travel Time*** Depth Area (ft) (acres) (acre-ft) (cfs) (cfs) (ft/sec) (Minutes) *** 0.000000 0.000000 0.000000 0.093205 0.000000 0.093205 0.000000 0.140972 0.161111 0.015016 0.322222 0.093205 0.030033 0.000000 0.140972 0.093205 0.045049 0.000000 0.140972 0.483333 0.644444 0.093205 0.060065 0.000000 0.140972 0.000000 0.140972 0.805556 0.093205 0.075082 0.966667 0.093205 0.090098 0.000000 0.140972 1.127778 0.093205 0.105114 0.000000 0.140972 1.288889 0.093205 0.120131 0.000000 0.140972 1.450000 0.093205 0.135147 0.000000 0.140972 0.093205 0.150163 0.140972 1.611111 0.000000 1.772222 0.093205 0.165180 0.000000 0.140972 0.093205 0.180196 1.933333 0.000000 0.140972 2.094444 0.093205 0.195212 0.208491 0.140972 2.255556 0.093205 0.210229 0.342958 0.140972 2.416667 0.093205 0.225245 0.437918 0.140972 2.577778 0.093205 0.240261 0.515679 0.140972 0.093205 0.255278 0.583161 0.140972 2.738889 2.900000 0.093205 0.270294 0.643606 0.140972 0.285310 3.061111 0.093205 0.866552 0.140972 0.093205 3.222222 0.300326 1.069832 0.140972 3.383333 0.093205 0.315343 1.217962 0.140972 3.544444 0.093205 0.330359 1.343694 0.140972 0.093205 1.455851 3.705556 0.345375 0.140972 0.093205 0.360392 1.558473 0.140972 3.866667 4.027778 0.093205 0.375408 1.816670 0.140972 0.390424 4.188889 0.093205 2.168024 0.140972 4.350000 0.093205 0.405441 2.406208 0.140972 4.511111 0.093205 0.420457 2.607444 0.140972 4.672222 0.093205 0.435473 2.787277 0.140972 4.833333 0.093205 0.450490 2.952343 0.140972 0.093205 0.465506 3.106275 0.140972 4.994444 5.155556 0.093205 0.480522 3.306769 0.140972 0.093205 0.495539 5.316667 3.544728 0.140972 3.799157 0.093205 0.510555 5.477778 0.140972 5.638889 0.093205 0.525571 4.062172 0.140972 5.800000 0.093205 0.540588 4.328805 0.140972 5.961111 0.093205 0.555604 4.595395 0.140972 6.122222 0.093205 0.570620 4.886108 0.140972 0.093205 0.585637 5.194000 6.283333 0.140972 6.44444 0.093205 0.600653 5.926323 0.140972 6.605556 0.093205 0.615669 6.324519 0.140972 0.093205 6.766667 0.630686 6.735256 0.140972 0.093205 0.645702 0.140972 6.927778 7.158020 7.088889 0.093205 0.660718 7.592363 0.140972 7.250000 0.093205 0.675735 8.037891 0.140972 7.411111 0.093205 0.690751 8.494252 0.140972 7.572222 0.093205 0.705767 8.961131 0.140972 7.733333 0.093205 0.720784 9.438241 0.140972 7.894444 0.093205 0.735800 9.925322 0.140972 0.093205 0.750816 10.42213 0.140972 8.055556 8.216667 0.093205 0.765833 10.92846 0.140972 0.093205 11.44408 0.140972 8.377778 0.780849 0.093205 0.795865 11.96883 8.538889 0.140972 8.700000 0.093205 0.810882 12.50250 0.140972 8.861111 0.093205 0.825898 13.04495 0.140972 9.022222 0.093205 0.840914 13.59600 0.140972 0.093205 0.855931 14.15552 9.183333 0.140972

0.140972

14.72336

9.344444

0.093205

0.870947

```
9.505556
          0.093205
                   0.885963
                              15.29939 0.140972
                   0.900979
                             15.88348 0.140972
         0.093205
9.666667
9.827778
         0.093205
                   0.915996
                             16.47551
                                       0.140972
         0.093205 0.931012
                             17.07537 0.140972
9.988889
10.15000 0.093205 0.946028
                             17.68295 0.140972
10.31111
         0.093205 0.961045 18.29814 0.140972
10.47222 0.093205 0.976061
                             18.92084 0.140972
                              19.55096 0.140972
         0.093205
                   0.991077
10.63333
10.79444
         0.093205
                   1.006094
                              20.18841
                                       0.140972
10.95556
         0.093205
                    1.021110
                              20.83309
                                        0.140972
11.11667
         0.093205
                    1.036126
                              21.48492
                                       0.140972
11.27778
         0.093205
                              22.14381
                    1.051143
                                       0.140972
         0.093205
                   1.066159
                              22.80970
11.43889
                                        0.140972
11.60000
         0.093205
                   1.081175
                              23.48250
                                        0.140972
11.76111
         0.093205
                   1.096192
                              24.16213
                                        0.140972
         0.093205
                   1.111208
                             24.84854
11.92222
                                       0.140972
                   1.126224
12.08333
         0.093205
                              25.63987
                                        0.140972
12.24444
         0.093205
                   1.141241
                              27.37720
                                       0.140972
         0.093205
                              29.55979
12.40556
                   1.156257
                                        0.140972
12.56667
         0.093205
                    1.171273
                              31.55393
                                        0.140972
12.72778
         0.093205
                    1.186290
                              32.88135
                                       0.140972
                              33.77184 0.140972
12.88889
         0.093205
                   1.201306
13.05000 0.093205
                   1.216322
                             34.54834 0.140972
         0.093205 1.231339
                             35.27120 0.140972
13.21111
                             35.95074 0.140972
13.37222 0.093205
                   1.246355
13.53333 0.093205
                   1.261371
                              36.59434 0.140972
13.69444
         0.093205
                   1.276388
                             37.20748
                                       0.140972
                              37.79436
13.85556
         0.093205
                   1.291404
                                        0.140972
14.01667
         0.093205
                    1.306420
                              38.35829
                                        0.140972
14.17778
         0.093205
                    1.321437
                              38.90193
                                        0.140972
14.33889
                              39.42746
         0.093205
                    1.336453
                                        0.140972
         0.093205
14.50000
                   1.351469
                              39.93668
                                        0.140972
END FTABLE 1
FTABLE
 91
   Depth
                      Volume
                             Outflow1
                                        Outflow2
                                                  Velocity
                                                            Travel Time***
             Area
    (ft)
          (acres) (acre-ft)
                              (cfs)
                                          (cfs)
                                                  (ft/sec)
                                                              (Minutes) ***
0.000000
         0.022957
                   0.000000
                              0.000000
                                        0.000000
0.088889
         0.024182
                   0.002095
                              1.534328
                                        0.011574
0.177778
         0.025408
                   0.004299
                             4.911125
                                       0.011574
         0.026634 0.006612
                             9.738430 0.011574
0.266667
0.355556
         0.027860 0.009034
                             15.87713
                                       0.011574
         0.029086 0.011565
                              23.25577 0.011574
0.444444
         0.030313 0.014205
0.533333
                             31.83456 0.011574
         0.031539
                   0.016954
                             41.59160 0.011574
0.622222
                             52.51624 0.011574
         0.032766
                   0.019812
0.711111
0.800000
         0.033992
                    0.022779
                              64.60537
                                        0.011574
0.888889
         0.035219
                    0.025855
                              77.86115
                                        0.011574
                    0.029040
                              92.28957
0.977778
         0.036446
                                        0.011574
                              107.8995
                                       0.011574
1.066667
         0.037673
                   0.032334
1.155556
         0.038901
                    0.035738
                              124.7019
                                       0.011574
         0.040128
                    0.039250
                              142.7094
1.244444
                                       0.011574
1.333333
         0.041355
                    0.042872
                              161.9361
                                       0.011574
         0.042583
                   0.046602
                             182.3968
                                       0.011574
1.422222
          0.043811
                    0.050442
                              204.1073
                                       0.011574
1.511111
1.600000
          0.045039
                   0.054391
                              227.0841
                                        0.011574
          0.046267
                    0.058449
                              251.3440
                                        0.011574
1.688889
                              276.9042
1.777778
          0.047495
                    0.062616
                                        0.011574
                              303.7825
1.866667
         0.048723
                   0.066892
                                       0.011574
1.955556
         0.049951
                   0.071278
                              331.9967
                                       0.011574
                   0.075773
2.044444
         0.051180
                              361.5648 0.011574
         0.052409
                   0.080376
                              392.5050 0.011574
2.133333
                             424.8357 0.011574
2.22222
         0.053637
                   0.085090
                             458.5753
         0.054866
                   0.089912
2.311111
                                       0.011574
2.400000
         0.056095
                    0.094844
                              493.7422
                                        0.011574
2.488889
          0.057325
                    0.099885
                              530.3550
                                        0.011574
2.577778
          0.058554
                    0.105035
                              568.4321
                                        0.011574
                              607.9921
          0.059783
2.666667
                    0.110294
                                        0.011574
2.755556
          0.061013
                    0.115663
                              649.0536
                                        0.011574
2.844444
         0.062243
                    0.121141
                              691.6350
                                        0.011574
```

```
2.933333
           0.063472
                    0.126728
                               735.7548
                                        0.011574
 3.022222
           0.064702
                    0.132425
                               781.4315
                                        0.011574
 3.111111
           0.065932 0.138231
                               828.6834 0.011574
 3.200000
           0.067163
                    0.144146
                               877.5290 0.011574
           0.068393 0.150171
                               927.9866 0.011574
 3.288889
 3.377778
           0.069624 0.156305
                              980.0744 0.011574
 3.466667
           0.070854 0.162548 1033.811 0.011574
                               1089.213 0.011574
           0.072085
                    0.168901
 3.555556
  3.644444
           0.073316
                    0.175363
                               1146.301
                                        0.011574
           0.074547
                     0.181935
                               1205.091
  3.733333
                                         0.011574
           0.075778
 3.822222
                    0.188616
                               1265.602
                                         0.011574
 3.911111
           0.077009
                               1327.852
                    0.195407
                                         0.011574
           0.078241
                     0.202307
                               1391.858
 4.000000
                                         0.011574
           0.079472
                               1457.638
 4.088889
                    0.209316
                                        0.011574
 4.177778
           0.080704
                    0.216435
                              1525.210
                                        0.011574
           0.081936 0.223664
 4.266667
                              1594.592
                                        0.011574
 4.355556
           0.083167
                    0.231001
                               1665.801
                                        0.011574
 4.44444
           0.084400
                    0.238449
                               1738.855
                                         0.011574
                               1813.771
                    0.246006
 4.533333
           0.085632
                                         0.011574
 4.622222
           0.086864
                    0.253672
                               1890.566
                                         0.011574
                    0.261448
                               1969.259
 4.711111
           0.088096
                                        0.011574
 4.800000
           0.089329 0.269334
                               2049.865
                                        0.011574
           0.090562 0.277329
 4.888889
                              2132.403
                                        0.011574
 4.977778
           0.091795 0.285434
                              2216.889 0.011574
 5.066667
           0.093028 0.293648
                              2303.341 0.011574
 5.155556 0.094261 0.301972
                              2391.775 0.011574
 5.244444
           0.095494
                    0.310406
                              2482.209
                                        0.011574
  5.333333
           0.096727
                     0.318949
                               2574.659
                                         0.011574
 5.422222
           0.097961
                     0.327602
                               2669.142
                                         0.011574
                               2765.676
 5.511111
           0.099194
                    0.336364
                                         0.011574
                               2864.276
 5.600000
           0.100428
                    0.345236
                                         0.011574
           0.101662
                    0.354218
                               2964.959
 5.688889
                                        0.011574
  5.777778
           0.102896
                    0.363309
                               3067.742
                                        0.011574
 5.866667
           0.104130 0.372511
                               3172.641
                                        0.011574
 5.955556
           0.105364
                    0.381821
                               3279.673
                                        0.011574
 6.044444
           0.106599 0.391242
                               3388.854
                                        0.011574
  6.133333
           0.107833
                    0.400772
                               3500.201
                                         0.011574
                               3613.730
                    0.410412
 6.22222
           0.109068
                                         0.011574
 6.311111
           0.110303
                    0.420162
                               3729.457
                                         0.011574
                    0.430022
 6.400000
           0.111538
                               3847.398
                                        0.011574
           0.112773 0.439991
                              3967.569
 6.488889
                                        0.011574
 6.577778
           0.114008 0.450070
                              4089.987
                                        0.011574
  6.666667
           6.755556 0.116479 0.470558 4341.627 0.011574
           0.117714
                    0.480967
                               4470.880 0.011574
 6.844444
                               4602.444 0.011574
 6.933333
           0.118950
                    0.491485
           0.120186
                     0.502113
                               4736.333
  7.022222
                                         0.011574
 7.111111
           0.121422
                     0.512851
                               4872.565
                                         0.011574
 7.200000
           0.122658
                    0.523699
                               5011.154
                                         0.011574
 7.288889
           0.123894
                    0.534657
                               5152.116
                                         0.011574
 7.377778
           0.125131
                     0.545725
                               5295.467
                                         0.011574
                     0.556903
 7.466667
           0.126367
                               5441.222
                                         0.011574
 7.555556
           0.127604
                     0.568190
                               5589.397
                                         0.011574
           0.128840
                    0.579588
                               5740.007
                                         0.011574
 7.644444
                               5893.069
           0.130077
                     0.591095
                                         0.011574
 7.733333
                                         0.011574
  7.822222
           0.131314
                     0.602713
                               6048.596
           0.132552
                     0.614440
                               6206.605
  7.911111
                                         0.011574
 8.000000
           0.133789
                     0.626277
                               6367.111
                                         0.011574
 END FTABLE
END FTABLES
```

EXT SOURCES

```
<-Volume-> <Member> SsysSqap<--Mult-->Tran <-Target vols> <-Grp> <-Member->
                                                                                  * * *
         # <Name> # tem strg<-factor->strg <Name>
                                                       # #
                                                                      <Name> # #
<Name>
MDM
         2 PREC
                     ENGL
                                              PERLND
                                                       1 999 EXTNL
                                                                     PREC
                              1
MDM
         2 PREC
                     ENGL
                              1
                                              IMPLND
                                                       1 999 EXTNL
                                                                     PREC
MDM
         1 EVAP
                     ENGL
                              1
                                              PERLND
                                                       1 999 EXTNL
                                                                     PETINP
WDM
                                                         999 EXTNL
         1 EVAP
                     ENGL
                              1
                                              IMPLND
                                                       1
                                                                     PETINP
MDM
        22 IRRG
                              0.7
                                        SAME PERLND
                                                      49
                                                              EXTNL
                                                                     SURLI
                     ENGL
MDM
        22 IRRG
                     ENGL
                              0.7
                                        SAME PERLND
                                                      57
                                                              EXTNL
                                                                     SURLI
```

END EXT SOURCES

EXT TARGETS								
<-Volume-> <-Grp>	<-Membe	r-><-	-Mult>Tran	<-Volu	ıme->	<member></member>	Tsys Tgap	Amd ***
<name> #</name>	<name></name>	# #<-	factor->strg	<name></name>	. #	<name></name>	tem strg	strg***
RCHRES 2 HYDR	RO	1 1	1	MDM	1004	FLOW	ENGL	REPL
RCHRES 2 HYDR	0	1 1	1	WDM	1005	FLOW	ENGL	REPL
RCHRES 2 HYDR	Ο	2 1	1	WDM		FLOW	ENGL	REPL
RCHRES 2 HYDR	STAGE	1 1	1	WDM	1007	STAG	ENGL	REPL
COPY 1 OUTPUT			48.4	MDM		FLOW	ENGL	REPL
COPY 501 OUTPUT	MEAN	1 1	48.4	MDM	801	FLOW	ENGL	REPL
END EXT TARGETS								
MASS-LINK	3.6 1		26 7 .	_		~	26 1	
<volume> <-Grp></volume>				<targe< td=""><td></td><td><-Gr</td><td>p> <-Membe</td><td></td></targe<>		<-Gr	p> <-Membe	
<name></name>		# #<-	factor->	<name></name>	•		<name></name>	# #***
MASS-LINK	2	_	002222	DOUDE	1	TNITT (N. T.	
PERLND PWATER END MASS-LINK	SURO 2	C	0.083333	RCHRES	•	TNFTC	OM IVOL	
END MASS-LINK	2							
MASS-LINK	3							
PERLND PWATER		(0.083333	RCHRES	;	TNFL	OW IVOL	
END MASS-LINK	3			псппп	,	1111 110	ow ivon	
	3							
MASS-LINK	5							
IMPLND IWATER	SURO	C	0.083333	RCHRES	;	INFLO	OW IVOL	
END MASS-LINK	5							
MASS-LINK	7							
RCHRES OFLOW	OVOL	1		RCHRES	;	INFLO	OW IVOL	
END MASS-LINK	7							
MASS-LINK	17							
RCHRES OFLOW		1		COPY		INPU	Γ MEAN	
END MASS-LINK	17							

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

ERROR/WARNING ID: 341 6

DATE/TIME: 1978/ 3/ 4 14:15

RCHRES: 1

The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are:

NROWS V1 V2 VOL 91 5.8216E+04 5.8870E+04 7.8740E+04

ERROR/WARNING ID: 341 5

DATE/TIME: 1978/ 3/ 4 14:15

RCHRES: 1

Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are:

A B C RDEP1 RDEP2 COUNT 0.0000E+00 8120.0 -2.548E+05 31.378 3.1378E+01 2

ERROR/WARNING ID: 341 6

DATE/TIME: 1978/ 3/ 4 14:30

RCHRES: 1

The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are:

NROWS V1 V2 VOL 91 5.8216E+04 5.8870E+04 8.1419E+04

ERROR/WARNING ID: 341 5

DATE/TIME: 1978/ 3/ 4 14:30

RCHRES: 1

Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are:

A B C RDEP1 RDEP2 COUNT 0.0000E+00 8120.0 -2.880E+05 35.473 3.5473E+01 2

ERROR/WARNING ID: 341 6

DATE/TIME: 1978/ 3/ 4 14:45

RCHRES: 1

Groves 11292017 12/2/2017 10:33:11 AM Page 38

The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are:

NROWS V1 V2 VOI 91 5.8216E+04 5.8870E+04 6.3916E+04

ERROR/WARNING ID: 341 5

DATE/TIME: 1978/ 3/ 4 14:45

RCHRES: 1

Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are:

A B C RDEP1 RDEP2 COUNT 0.0000E+00 8120.0 -7.077E+04 8.7149 8.7149E+00 2

ERROR/WARNING ID: 341 6

DATE/TIME: 1980/ 1/30 17: 0

RCHRES: 1

The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are:

NROWS V1 V2 VOI 91 5.8216E+04 5.8870E+04 7.2102E+04

ERROR/WARNING ID: 341 5

DATE/TIME: 1980/ 1/30 17: 0

RCHRES: 1

Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are:

A B C RDEP1 RDEP2 COUNT 0.0000E+00 8120.0 -1.724E+05 21.229 2.1229E+01 2

ERROR/WARNING ID: 341 6

DATE/TIME: 1980/ 1/30 17:15

RCHRES: 1

The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are:

NROWS V1 V2 VOI 91 5.8216E+04 5.8870E+04 6.5788E+04 ERROR/WARNING ID: 341 5

DATE/TIME: 1980/ 1/30 17:15

RCHRES: 1

Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are:

A B C RDEP1 RDEP2 COUNT 0.0000E+00 8120.0 -9.400E+04 11.576 1.1576E+01 2

Groves 11292017 12/2/2017 10:33:11 AM Page 40

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2017; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

Groves 11292017 12/2/2017 10:33:11 AM Page 41

Attachment D Operations & Maintenance

DF-1DRAINAGE FACILITY OPERATION AND MAINTENANCE

As a consequence of its function, the stormwater conveyance system collects and transports urban runoff and storm water that may contain certain pollutants. Consequently these pollutants may accumulate in the system and must be removed periodically. In addition, the systems must also be maintained to function properly hydraulically to avoid flooding. Maintaining the system may involve the following activities:

- 1. Inspection and Cleaning of Stormwater Conveyance Structures
- 2. Controlling Illicit Connections and Discharges
- Controlling Illegal Dumping

This list of Model Maintenance Procedures can be utilized as an inspection checklist to determine where better compliance with Designated Minimum Best Management Practices (notated with checkmarks and capital letters) is needed, and to recommend Additional Best Management Practices (notated with bullet points and lower case letters) that may be applicable under certain circumstances, especially where there are certain Pollutant Constituents of Concern. BMPs applicable to certain constituents are notated as:

Bacteria (BACT)	Sediment (SED)	Nutrients (NUT) Oil and Grease (O&G)	Pesticides (PEST)
OtherToxic Compounds	s (TOX)	Trash (TRASH)	Hydrological Impacts (HYD)	Any/All or General (ANY)
Program/Facility Be	eing Inspected:			
Date:		Inspector Nam	ie:	
When completed, t	he checklist sh	nould be attache	ed to the General Inspec	tion Form Cover Sheet
and copies should I	be provided to	the Supervisor of	of the Facility/Program be	eing inspected.

MAINTENANCE PROCEDURES:

1. Inspection and Cleaning of Drainage Facilities

1. Inspection and Cleanin	ig of Drainage Facilities
Unsatisfactory	General Guidelines
OK	T 1A. Annually inspect and clean drainage structures as
	needed.
	T 1B. Maintain appropriate records of cleaning and
	inspections.
	T 1C. Properly dispose of removed materials at a landfill
	or recycling facility.
	T 1D. Conduct intermittent supplemental visual
	inspections during the wet season to determine if there are
	problem inlets where sediment/trash or other pollutants
	accumulate, and provide for additional cleanouts as
	appropriate.
	T 1E. Prevent or clean up any discharges that may occur during the course of maintenance and cleaning
	procedures.
	T 1F. Verify that appropriate employees or subcontractors
	are trained in proper conductance of maintenance
	activities, including record keeping and disposal.
	T 1G. Annually inspect and clean v-ditches as needed,
	prior to the wet season. On shrub-covered slopes,
	vegetative debris may be placed on the downhill side of
	the ditch. Trash should be bagged and disposed at a
	landfill.

Unsatisfactory		Canada Cuidalinas (aaut)
	OK	General Guidelines (cont.)
		 1a. Remove trash or debris as needed from open channels. It should be noted that major vegetative debris removal may require other regulatory permits prior to
		completing the work. (TRASH)
		 1b. Consider retrofitting energy dissipaters (e.g. riprap) below culvert outfalls to minimize potential for erosion. (SED)
		1c. Repair any v-ditches that have cracked or displaced in a manner that accelerates erosion. (SED)
		 1d. If suspicious conditions appear to exist, test selected samples of the removed wastes for compliance with hazardous waste regulations prior to disposal. (TOX)
		1e. Consider more frequent regular cleaning of selected drainage structures to help address ongoing specific impairments. (SED, BACT, NUT, TRASH)
		 1f. Consider structural retrofits to the MS4 to help address ongoing specific impairments (SED, BACT, NUT, TRASH, O&G)
<u> </u>		 1g. Consider cleaning out pipes at gradient breaks or other in-pipe debris accumulation points as identified/needed. (ANY, BACT, NUT, TRASH)
		Storm Drain Flushing
		 1h. Flushing of storm drains or storm drain inlets should only be done when critically necessary and no other solution is practical. (SED, BACT, TRASH).
		 1i. If flushed, to the extent practical the material should be collected (vacuumed), treated with an appropriate filtering device to remove sand and debris and disposed of properly. (SED)
		Waste Management
		T 1H. Store wastes collected from cleaning activities of the drainage facilities in appropriate containers or temporary storage sites in a manner that prevents discharge to the storm drain.
		 1j. Dewater the wastes if necessary with outflow into the
		sanitary sewer if permitted. Water should be treated with an appropriate filtering device to remove the sand and debris prior to discharge to the sanitary sewer. If
		discharge to the sanitary sewer is not permitted, water should be pumped or vacuumed to a tank and properly disposed of. Do not dewater near a storm drain or
		stream. (SED, TRASH) • 1k. Provide for laboratory analysis of at least one randomly collected sediment (less the debris) sample per year from the storm drain inlet leaning program to ensure that it does not meet the EPA criteria for hazardous waste. If the sample is determined to be hazardous, the sediment must be disposed of as hazardous waste and
		the source should be investigated. (TOX).

2. Controlling Illicit Con	nec	tions and Discharges
Unsatisfactory OK	Ge	neral Guidelines
		2A. Report prohibited discharges such as dumping, paint
	1	spills, abandoned oil containers, etc. observed during the
		course of normal daily activities so they can be
		investigated, contained, and cleaned up.
	T	2B. Where field observations and/or monitoring data
		indicate significant problems, conduct field investigations to
		detect and eliminate existing illicit connections and
		improper disposal of pollutants into the storm drain (i.e.
		identify problem areas where discharges or illegal
		connections may occur and follow up stream to determine
		the source(s)). (Refer to Appendices A-10 and A-11.)
<u> </u>	T	2C. Report all observed illicit connections and
		discharges to the 24-hour water pollution problem reporting
		hotline (714) 567-6363.
	Т	2D. Encourage public reporting of improper waste
□□	1	disposal by distributing public education materials and
		advertising the 24-hour water pollution problem reporting
		hotline.
	St	orm Drain Stenciling ("No Dumping—Drains to Ocean")
	T	2E. Implement and maintain a storm drain stenciling
		program.
		2a. Consider adding the hotline number to the storm
		drain stencils (BACT, TOX, TRASH).
	<u> </u>	,
3. Controlling Illegal Du		ng
3. Controlling Illegal Du		,
		ng eld Investigation
3. Controlling Illegal Du	Fie	eld Investigation 3A. Report prohibited discharges such as dumpings
	Fie	ng eld Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so
	T	ng eld Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up.
	Fie	ng ald Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate
	T	ng 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate improper disposal of pollutants into the storm drain (i.e.
	T	eld Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate improper disposal of pollutants into the storm drain (i.e. identify problem areas where discharges or illegal
	T	eld Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate improper disposal of pollutants into the storm drain (i.e. identify problem areas where discharges or illegal connections may occur and follow up stream to determine
	T	eld Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate improper disposal of pollutants into the storm drain (i.e. identify problem areas where discharges or illegal connections may occur and follow up stream to determine the source(s)).
	T	eld Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate improper disposal of pollutants into the storm drain (i.e. identify problem areas where discharges or illegal connections may occur and follow up stream to determine the source(s)).
	T T	eld Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate improper disposal of pollutants into the storm drain (i.e. identify problem areas where discharges or illegal connections may occur and follow up stream to determine the source(s)). 3C. Report all observed illegal dumping to the 24-hour
	T	ald Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate improper disposal of pollutants into the storm drain (i.e. identify problem areas where discharges or illegal connections may occur and follow up stream to determine the source(s)). 3C. Report all observed illegal dumping to the 24-hour water pollution problem reporting hotline (714) 567-6363.
	T T	eld Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate improper disposal of pollutants into the storm drain (i.e. identify problem areas where discharges or illegal connections may occur and follow up stream to determine the source(s)). 3C. Report all observed illegal dumping to the 24-hour water pollution problem reporting hotline (714) 567-6363. 3D. Encourage public reporting of improper waste
	T	eld Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate improper disposal of pollutants into the storm drain (i.e. identify problem areas where discharges or illegal connections may occur and follow up stream to determine the source(s)). 3C. Report all observed illegal dumping to the 24-hour water pollution problem reporting hotline (714) 567-6363. 3D. Encourage public reporting of improper waste disposal by distributing public education materials and
	T	eld Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate improper disposal of pollutants into the storm drain (i.e. identify problem areas where discharges or illegal connections may occur and follow up stream to determine the source(s)). 3C. Report all observed illegal dumping to the 24-hour water pollution problem reporting hotline (714) 567-6363. 3D. Encourage public reporting of improper waste disposal by distributing public education materials and advertising the 24-hour water pollution problem reporting
	T	ald Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate improper disposal of pollutants into the storm drain (i.e. identify problem areas where discharges or illegal connections may occur and follow up stream to determine the source(s)). 3C. Report all observed illegal dumping to the 24-hour water pollution problem reporting hotline (714) 567-6363. 3D. Encourage public reporting of improper waste disposal by distributing public education materials and advertising the 24-hour water pollution problem reporting hotline.
	T	eld Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate improper disposal of pollutants into the storm drain (i.e. identify problem areas where discharges or illegal connections may occur and follow up stream to determine the source(s)). 3C. Report all observed illegal dumping to the 24-hour water pollution problem reporting hotline (714) 567-6363. 3D. Encourage public reporting of improper waste disposal by distributing public education materials and advertising the 24-hour water pollution problem reporting
	T T T	ald Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate improper disposal of pollutants into the storm drain (i.e. identify problem areas where discharges or illegal connections may occur and follow up stream to determine the source(s)). 3C. Report all observed illegal dumping to the 24-hour water pollution problem reporting hotline (714) 567-6363. 3D. Encourage public reporting of improper waste disposal by distributing public education materials and advertising the 24-hour water pollution problem reporting hotline.
	T T T	eld Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate improper disposal of pollutants into the storm drain (i.e. identify problem areas where discharges or illegal connections may occur and follow up stream to determine the source(s)). 3C. Report all observed illegal dumping to the 24-hour water pollution problem reporting hotline (714) 567-6363. 3D. Encourage public reporting of improper waste disposal by distributing public education materials and advertising the 24-hour water pollution problem reporting hotline. 3E. If perpetrator can be identified, take appropriate enforcement action.
	T T T	Peld Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate improper disposal of pollutants into the storm drain (i.e. identify problem areas where discharges or illegal connections may occur and follow up stream to determine the source(s)). 3C. Report all observed illegal dumping to the 24-hour water pollution problem reporting hotline (714) 567-6363. 3D. Encourage public reporting of improper waste disposal by distributing public education materials and advertising the 24-hour water pollution problem reporting hotline. 3E. If perpetrator can be identified, take appropriate enforcement action. 3a. Consider posting "No Dumping" signs in problem
	T T T	eld Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate improper disposal of pollutants into the storm drain (i.e. identify problem areas where discharges or illegal connections may occur and follow up stream to determine the source(s)). 3C. Report all observed illegal dumping to the 24-hour water pollution problem reporting hotline (714) 567-6363. 3D. Encourage public reporting of improper waste disposal by distributing public education materials and advertising the 24-hour water pollution problem reporting hotline. 3E. If perpetrator can be identified, take appropriate enforcement action. 3a. Consider posting "No Dumping" signs in problem areas with a phone number for reporting dumping and
	T T T	Peld Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate improper disposal of pollutants into the storm drain (i.e. identify problem areas where discharges or illegal connections may occur and follow up stream to determine the source(s)). 3C. Report all observed illegal dumping to the 24-hour water pollution problem reporting hotline (714) 567-6363. 3D. Encourage public reporting of improper waste disposal by distributing public education materials and advertising the 24-hour water pollution problem reporting hotline. 3E. If perpetrator can be identified, take appropriate enforcement action. 3a. Consider posting "No Dumping" signs in problem areas with a phone number for reporting dumping and disposal. Signs could also indicate fines and penalties for
	T T T	eld Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate improper disposal of pollutants into the storm drain (i.e. identify problem areas where discharges or illegal connections may occur and follow up stream to determine the source(s)). 3C. Report all observed illegal dumping to the 24-hour water pollution problem reporting hotline (714) 567-6363. 3D. Encourage public reporting of improper waste disposal by distributing public education materials and advertising the 24-hour water pollution problem reporting hotline. 3E. If perpetrator can be identified, take appropriate enforcement action. 3a. Consider posting "No Dumping" signs in problem areas with a phone number for reporting dumping and
	T T T	Peld Investigation 3A. Report prohibited discharges such as dumpings observed during the course of normal daily activities so they can be investigated, contained and cleaned up. 3B. Conduct field investigations to detect and eliminate improper disposal of pollutants into the storm drain (i.e. identify problem areas where discharges or illegal connections may occur and follow up stream to determine the source(s)). 3C. Report all observed illegal dumping to the 24-hour water pollution problem reporting hotline (714) 567-6363. 3D. Encourage public reporting of improper waste disposal by distributing public education materials and advertising the 24-hour water pollution problem reporting hotline. 3E. If perpetrator can be identified, take appropriate enforcement action. 3a. Consider posting "No Dumping" signs in problem areas with a phone number for reporting dumping and disposal. Signs could also indicate fines and penalties for

DF-1

	Tra	raining/Education/Outreach
Unsatisfactory OK	T	3F. Verify that appropriate employees and
		subcontractors are trained to recognize and report illegal
		dumping.
	T	3G. Encourage public reporting of illegal dumping by
		advertising the 24-hour water pollution problem reporting
		hotline (714) 567-6363.
	•	3b. Take extra steps to educate the public in
		neighborhoods where illegal dumping has occurred to
		inform them why illegal dumping is a problem, and that
		illegal dumping carries a significant financial penalty.
		(ANY)

LIMITATIONS:

Clean-up activities may create a slight disturbance for local aquatic species. Access to items and material on private property may be limited. Trade-offs may exist between channel hydraulics and water quality/riparian habitat. If storm channels or basins are recognized as wetlands, many activities, including maintenance, may be subject to regulation and permitting.