Oak Grove

PA No. PA160056

Master Drainage Plan

Prepared for:

The County of Orange

On Behalf of:

Oak Grove LLC and Silver-Bronze Corporation

One Upper Newport Plaza Newport Beach, CA 92660

Project Name:

Oak Grove Master Drainage Plan

23432 VISTA DEL VERDE, COTO DE CAZA, CA 92679 APN: 804-261-12, 23, & 24

Prepared by:

Roy Roberson, P.E. #44160

Land Strategies, LLC 9241 Irvine Boulevard, Suite 100 Irvine, CA 92618-1695 (949) 580-3000 x 701, <u>roy@land-strategies.us</u>

> 1st Submittal: 8/14/2017 2nd Submittal: 12/12/2017 3rd Submittal: 10/8/2018

TABLE OF CONTENTS

1.	INT	RODUCTION
	1.1.	Purpose1
	1.2.	Site Description2
	1.3.	Scope of Drainage Plan2
2.	Ну	drologic Methodolgy6
	2.1	Rational Method6
	2.2	Unit Hydrograph Method7
	2.3	Watershed Hydrologic Information7
3.	HY	DRAULICS
4.	DE	VELOPMENT CONDITIONS
	4.1	Coto Equestrian Preserve Existing Condition Description9
	4.2	Interim condition Description9
5.	DIS	CUSSION OF RESULTS
	5.1	Flood Plain Evaluation Summary10
	5.2	Hydrologic and Hydraulic Results11
	5.2.1	Interim Hydrologic and Hydraulic Results13
6.	СС	I4
7.	REF	FERENCES
8.	TEC	CHNICAL APPENDICES

Tables

Figures

Figure 1-1: Vicinity Map	4
Figure 1-2: Project Site Location Map	5

Technical Appendices

Appendix A: Existing, Interim, and Proposed Hydrology Maps and Soils Maps Appendix B: Hydrology Analysis Appendix C: Hydraulic Analysis and Firmette

1. INTRODUCTION

This analysis is intended solely to support the Oak Grove Residential project that is the subject of the current application (PA160056).

This analysis shows that the Oak Grove Residential project can be developed now creating an 'Interim Condition' that complies with SOCHM with no future development ever taking place on the CEP property. Because the underground drainage reservoir includes infiltration it can serve the function of both water quality control and flow rate reduction in the same location. Because it is located outside the FEMA Flood Plain, it can be developed without a requirement for a Flood Insurance Rate Map (FIRM) Map Revision before or after its construction.

As a separate matter, the ability to build within the entire building area on Lot 9 will require a FIRM LOMR to be issued before the building is occupied. At the time that a grading plan and permit is processed, an application for a Conditional Letter of Map Revision based on Fill (C-LOMR-F) will be submitted to the County for acceptance and to FEMA for approval. After the Grading is complete and Certified, documentation will be provided to FEMA for issuance of the LOMR. Note that FEMA typically issues LOMRs and does not reprint the FIRMs except for when major regional changes have been made.

1.1. Purpose

This Master Drainage Plan (Plan) was developed to support the approval of Tentative Tract Map (TTM) Number 17866, also known as the Oak Grove residential development, located in Coto De Caza, in the County of Orange. The Plan presents a tentative tract level drainage analysis for the improvements necessary to support the proposed development of the Oak Grove residential area.

The development area is bound by Vista Del Verde to the west, Via Pajaro to the south and west and existing low density residential area to the north. It borders an existing commercial complex to the south, a residential housing tract to the west, and a natural creek to the south-east. Figures 1-1 and 1-2 are the Vicinity Map and Project Site Map, respectively.

It is anticipated that additional hydraulic analysis may be performed during final design if alternate BMP, infiltration and basin outlet configurations are considered.

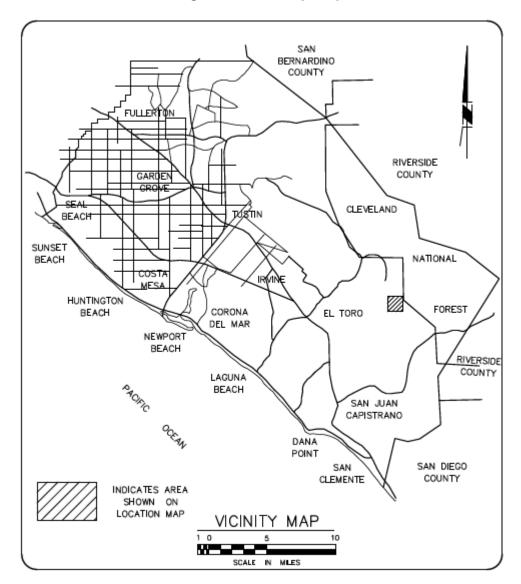
1.2. Site Description

The current project area includes only the Oak Grove Residential property and minor improvements on the adjacent CEP that are necessary to support Oak Grove. The portion of the property which is being developed currently contains commercial buildings and impervious parking areas. This area is currently zoned Community Center Commercial. The developed condition will be zoned Low Density Single Family Residential. The site is in within the Canada Gobernadora watershed of southern Orange County, which is tributary to San Juan Creek. Site drainage generally flows south to Via Pajaro. Currently on-site drainage sheet flows from impervious and pervious surfaces and is collected by various storm drain pipes that outlet into a small natural creek adjacent to Via Pajaro. The natural creek drains south eventually draining into Canada Gobernadora. Canada Gobernadora drains south into San Juan Creek which ultimately discharges into the Pacific Ocean.

The proposed project includes minor grading and drainage improvements within the current CEP as well as demolition and construction of improvements within the existing Community Center Commercial property necessary for the construction of 13 single family residential units which makes up Oak Grove.

Runoff from the project site will mimic drainage patterns in the existing condition. In order to provide water quality treatment and match existing runoff rates, the Oak Grove project includes a proposed underground infiltration reservoir and bioretention basis. The on-site soils consist of high permeability sandy loam and gravel that are suitable for infiltration of storm water. However, prior to final design an infiltration test is recommended to verify infiltration rates at the proposed structure depths and to confirm that underdrains will not be necessary. The BMPs will provide water quality treatment and flow attenuation for hydromodification purposes before discharging runoff into the natural creek adjacent to Via Pajaro.

1.3. Scope of Drainage Plan


This Plan presents hydrologic characteristics for the existing and interim condition development. Hydraulic calculations are also provided in this report but only for the interim condition. The calculations are provided to show that the permanent drainage improvements within the Oak Grove and the temporary drainage features in the CEP will convey runoff during the interim and proposed conditions. The existing condition analysis will incorporate existing condition impervious areas as well as the current drainage patterns for both Oak Grove and CEP. The interim condition will include the proposed Oak Grove residential development and the existing CEP condition.

The objectives of this study include the following:

- 1. Develop existing and proposed condition hydrology maps that identify drainage boundaries and subareas within the project area.
- 2. Prepare hydrological analysis based on the Orange County Rational Method and Small Area Unit Hydrograph Method for the 10-year, 25-year, and 100-year storm events.
- 3. Evaluate peak runoff attenuation by incorporating the proposed BMP stage storage curves into the Small Area Unit Hydrographs for the interim and proposed condition.
- 4. Provide hydraulic analysis for the proposed Oak Grove. This includes the concrete swales and riser. These calculations were based on the Orange County Hydrology Manual using the 100-year storm event.

This report does not discuss water quality or hydromodification requirements or the sizing of the proposed BMPs in regards to the water quality requirements. Detailed discussions of the water quality features are contained in the Oak Grove Water Quality Management Plan (WQMP), under a separate cover.

Figure 1-1: Vicinity Map

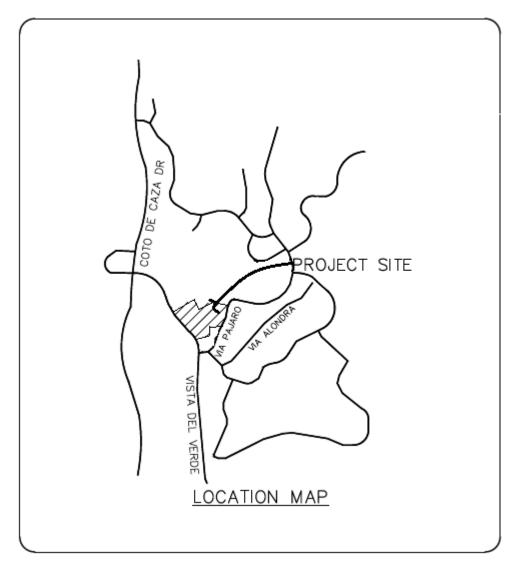


Figure 1-2: Project Site Location Map

2. HYDROLOGIC METHODOLGY

The hydrology analysis for this project was performed based on the Orange County Hydrology Manual (1986 including the 1996 Addendum). The manual recommends use of the Rational Method (RM) or the Modified Rational Method hydrology for projects with drainage area less than 1 square mile and that do not have detention basins. For watershed areas that are less than 1 square mile and contain detention basins the Small Area Unit Hydrograph method is necessary. In order to develop a Small Area Unit Hydrograph the time of concentration for the watershed is necessary. The Rational Method will be used to develop the time of concentration for each of the project subwatersheds.

The hydrologic analysis was performed using the AES and HEC-1 computer programs developed by the Hydrologic Engineering Center. The hydrologic model was applied to quantitatively estimate the surface runoff flow rates for a range of rainfall events, including the 10-, 25-, and 100-year return periods.

2.1 Rational Method

The RM hydrology model was developed using a "link-node" model to facilitate the analysis of a watershed by dividing the system into a series of inter-connected processes. A hydrologic process occurs at a "node" and these are connected by hydraulic conveyances or "links." Additional critical concentration points were identified to establish the appropriate nodes, such as at confluences, culvert crossings, or storm drain outlets. The link-node model was developed for the backbone storm drain conveyance system and computer-generated facility sizing. An overall schematic node diagram was developed to diagram the hydrologic processes and verify the basin sub areas are correctly modeled. The RM formula estimates the peak rate of runoff at any location in a watershed as a function of the drainage area (A), runoff coefficient (C), and rainfall intensity (I) for a duration equal to the time of concentration (Tc), which is the time required for water to flow from the most remote point of the basin to the location being analyzed. The RM formula is expressed as follows:

Q = C I A, Where:

Q = peak discharge, in cubic feet per second (cfs)

C = runoff coefficient (unit-less)

I = average rainfall intensity for a duration equal to the Tc for the area (inch/hour) A = drainage area (acres) The runoff coefficient is based on land use and soil type. Soil type can be determined from the soil type map provided in the Orange County Hydrology Manual. An appropriate runoff coefficient (C) for each type of land use in the subarea was generated using the AES Hydrology Program. Runoff coefficients are generated based on the land use and impervious area associated with each land use.

The rainfall intensity is also based on land use and cover type as well as time of concentration. The time of concentration and intensities are all generated using the AES Hydrology Program. Detailed rational method analysis results for this project are included in Appendix B of this report.

2.2 Unit Hydrograph Method

The Unit Hydrograph method is used for watersheds larger than 1 square mile to estimate peak discharges and volumes of storm water runoff. This method produces a graph of discharge vs. time for the entire length of a storm. Input needed to derive a runoff hydrograph includes lag time (=0.8Tc), drainage area, appropriate S-graph, rainfall depths, soil loss rates, and depth-area-reduction factors. The AES Hydrology Program was used to model the project's drainage characteristics and evaluate the required basin size in order to attenuate peak flow rates and match the existing condition.

2.3 Watershed Hydrologic Information

The watershed consists of various soils ranging from A to D type, however the project watershed consists predominately of soil type A and C. A soil survey was developed using the natural resources conservation service's (NRCS) websoil online survey. The results have been provided in Appendix A.

The land use assumption for the existing condition was based on current undeveloped site conditions. The CEP consists of open space, decomposed granite roads, native vegetation, landscaped areas and various building structures. The Oak Grove area is currently part commercial property and existing equestrian land use. The commercial area consists of an existing school building and impervious parking area.

The CEP will remain equestrian land use that is predominately pervious. The surface covers will consist of decomposed granite access roads, dirt arenas, native landscaping, and various structures similar to the existing condition. Multiple buildings are being

removed in the proposed condition which will reduce impervious land cover. The Oak Grove development will consist of a proposed single family residential land use. This was used to establish the land use and curve number (CN) assumptions for the on-site project watershed and prepare the design hydrology for the project.

3. HYDRAULICS

In order to size the proposed drainage improvements, the peak runoff from the 100-year storm event was used. The outlet structure was sized to attenuate peak runoff in order to meet hydromodification requirements. As previously mentioned, the hydromodification analysis is provided in the stand alone WQMP.

The discharge for the vertical opening on the outlet was computed using the orifice and weir equations. Discharge through an opening on the riser was computed using the orifice equation:

 $Q_o = CA\sqrt{2gH}$, Where:

 Q_{O} = orifice discharge, in cubic feet per second (cfs) C = orifice discharge coefficient (unit-less) A = cross-sectional area square feet (sf)

g = gravitational acceleration (32.174 ft/s²)

H = headwater above midpoint of the orifice opening (feet)

The discharge through the top of the riser was computed using the weir equation:

 $Q_w = CLH^{1.5}$, Where:

Q_w = weir discharge, in cubic feet per second (cfs)

C = weir discharge coefficient (unit-less), 3.32 was used for sharp-crested weir.

L = crest length (feet),

H = headwater above crest (feet)

The top of the combined weir is configured to pass the non-attenuated 100-year storm event while sustaining a minimum freeboard of 0.5 feet to the top of embankment.

The sizing of the proposed concrete swales conveying on-site and off-site flow from the project site was performed based on the normal depth using Manning's equation. The swales were sized to convey the 100 year storm event. Results are provided in Appendix C.

4. DEVELOPMENT CONDITIONS

This section summarizes the drainage conditions and patterns for each phase of the development.

4.1 Coto Equestrian Preserve Existing Condition Description

The existing project watershed generally drains in a southeast direction and is divided into two sub-drainage areas, A and C. Runoff from sub-area A drains to an existing low point and into an existing storm drain adjacent to the east side Via Pajaro. This storm drain conveys runoff underneath Via Pajaro and discharges into the natural creek adjacent to the roadway. Runoff generated within sub-area C sheet flows through the existing commercial area and into the catch basins located at the corner of Via Pajaro and Vista Del Verde before draining into the natural creek adjacent to the southeast side of the project. Runoff from the site is mainly generated onsite as well as run-on from an adjacent low density residential area as shown in the Hydrology Map located in Appendix A. Topography was not developed for this off-site area so the drainage areas were estimated using available topographic imagery.

4.2 Interim condition Description

The interim condition consists of 13 single family residential units. Runoff within the Oak Grove development, sub-area D, is being drained in a similar direction as the existing condition towards the natural creek adjacent to Via Pajaro. Runoff generated within subarea D drains into the proposed residential street and is conveyed north towards the proposed concrete swale through a proposed curb and gutter. The concrete swale discharges into the proposed underground infiltration reservoir sized to mitigate increases in runoff from the proposed development. The reservoir was sized to meet water quality, hydromodification, and flood control requirements. The water quality and hydromodification sizing criteria is covered in further detail in the stand alone Water Quality Management Plan (WQMP). The outlet was sized to convey the peak discharge from the 100-year storm event. The outlet sizing methodology is summarized in the hydraulic section below. Results for the hydraulic calculations are provided in Appendix C of this report. The outlet pipe in the proposed BMP drains into a proposed storm drain system within Via Pajaro where it confluences with existing runoff from the CEP property (sub-area A). This system traverses south and connects to an existing storm drain which drains beneath Via Pajaro and into the natural creek adjacent to Via Pajaro.

The hydrologic analysis for the interim condition is based on the proposed grading plan for the residential development area and the existing topography for the CEP area adjacent to the Oak Grove. Runoff within sub-area A that originally drained southeast towards the existing commercial center will be conveyed in a proposed temporary concrete drainage channel located along the north side of the Oak Grove development. This channel traverses southeast along the north perimeter of the Oak Grove property and discharges through a culvert into a storm drain system within Via Pajaro. This storm drain discharges into the natural creek adjacent to the east side of the development.

5. DISCUSSION OF RESULTS

This section summarizes the results of the hydrologic and hydraulic analysis, provides a brief summary of the existing flood plain evaluation, and a brief summary of the mitigation measures that will be taken.

5.1 Flood Plain Evaluation Summary

According to Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) No. 06059C0452J, portions of the project site are located within a Special Flood Hazard Area (SFHA) designated as Flood Zone AE. By definition, areas within Flood Zone AE are subject 1-percent chance of annual flooding. Flood Zone AE traverses the southeast corner of the project site and crosses a portion of Lot 9.

One of the proposed lots (lot 9) falls within the existing limits of FIRM Zone AE as depicted on the FIRM created by FEMA attached in Appendix C. This is the portion of the Flood Plain where development is allowed and subject to a federal requirement for the purchase of mandatory flood insurance unless the FIRM is revised to exclude this area.

The residential lot can be removed from the flood zone by placing fill on the lot and by applying to FEMA for a C-LOMR-F (a conditional letter of map revision based on fill) before the grading plan is approved. A final LOMR can be obtained from FEMA only after the grading has been completed and certified. Thereafter, any house placed on the lot will not be subject to the mandatory flood insurance requirement.

The Storm Water Basin proposed replaces an existing basin of similar size and location that is partly in the Flood Plain. However, in order to avoid additional concerns associated with constructing the new basin within the existing Flood Plan the proposed basin has been located entirely outside the SFHA and the storm water management capacity of the existing basin in the SFHA has been disregarded and can be eliminated.

The purpose of this configuration is to demonstrate that it is possible to mitigate the drainage from Oak Grove without any modification of, or construction within, the SFHA.

This approach is not intended to preclude other options that may be considered and approved by the County Flood Control department at the time that construction documents are reviewed.

5.2 Hydrologic and Hydraulic Results

Hydrology was performed for the existing, interim, and proposed condition. Table 4-1 provides a summary for the peak flows for the 100-year storm event. The unmitigated condition represents the condition without inclusion of the basin while the mitigated condition accounts for the attenuation from the basin.

	Table 5-1: Oak Grove Hydrology Summary													
		Flow Rate (cfs)												
Discharge			10-Year			25-Year			100-Year					
Points	Drainage Area		Interim/P	roposed		Interim/P	roposed		Interim/Proposed					
		Existing	Unmitigated	Mitigated	Existing	Unmitigated	Mitigated	Existing	Unmitigated	Mitigated				
	Area A	32.56	33.12*	10.66	41.15	41.03*	17.15	55.29	54.46*	20.16				
No. 1	Area B	N/A	12.86	6.56	N/A	15.59	8.16	N/A	20.31	10.1				
	Total	32.56	45.98	17.22	41.15	56.62	25.31	55.29	74.77	30.26				
	Area B	8.98		N/A	11.02		N/A	14.43		N/A				
No.2	Area C	N/A	3.38*	N/A	N/A	4.16*	N/A	N/A	5.46*	N/A				
	Total	8.98	3.38	N/A	11.02	4.16	N/A	14.43	5.46	N/A				

*Areas A and C will not include basins during the interim condition and therefore will only have an unmitigated flow rate.

The proposed basins will provide the necessary attenuation to reduce peak flow rates during the interim and proposed condition for the entire project.

5.2.1 Interim Hydrologic and Hydraulic Results

The proposed basin within the Oak Grove has a 20-inch diameter outlet riser. As shown in the stage storage discharge table (Generated from SOCHM) contained in Appendix C, the riser will pass up to 40.63 cfs which far exceeds the expected 20.31 cfs. The riser will convey 20.31 cfs at a height of 10.8 feet which is 3.7 feet below the top of the structure. There will be sufficient capacity to pass the 20.31 cfs produced during the 100-year storm event while maintaining adequate freeboard.

The proposed on-site channel will need to be approximately 3 feet wide and 1.5 foot deep to convey the 20.31 cfs produced in the 100-year storm event and maintain a 0.5' freeboard. While the proposed interim off-site channel would need to be 1.5 feet deep and 4.5 feet wide to convey the 52.03 cfs produced during the 100-year event. Although there is sufficient space to construct a 4.5 foot wide 1.5 foot deep channel within the CEP property, not all of the drainage area is anticipated to be tributary to this channel. Further analysis is recommended during final design to reduce the size of the swale for the off-site area. All of the results are provided in Appendix C of this report.

6. CONCLUSION

In conclusion, the Oak Grove residential development can be constructed and the runoff safely contained in the proposed streets and concrete channel without the need for underground storm drains. The proposed underground infiltration reservoir will be able to convey runoff from the 100-year storm event while providing water quality benefits and attenuation to meet the hydromodification and water quality requirements of the San Diego Regional Water Quality Board NPDES Permit.

Additionally, runoff from the residential development can be segregated from runoff from the CEP, treated and then conveyed to the existing storm drain crossing Via Pajaro without new construction on the east side of Via Pajaro. Runoff from the CEP that is currently tributary to the Oak Grove site can be safely contained and conveyed around the new development by the proposed drainage swale which conveys runoff to the existing point of discharge served by the existing storm drain crossing within Via Pajaro.

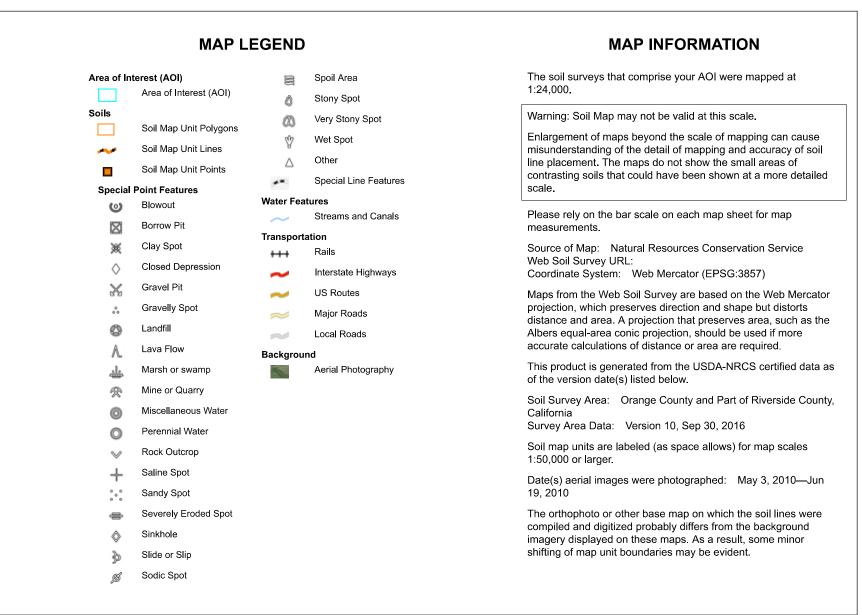
7. REFERENCES

Orange County Hydrology Manual (1986).

United States Department of Agriculture Natural Resources Conservation Service Web Soil Survey, http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx .

United States Federal Emergency Management Agency (FEMA), Definitions of FEMA Flood Zone Designations. Website: https://msc.fema.gov (accessed October 10, 2013).

8. TECHNICAL APPENDICES


A. APPENDIX – SOILS AND HYDROLOGY MAPS

2/18/2017 Page 1 of 3

Natural Resources **Conservation Service**

Web Soil Survey National Cooperative Soil Survey

Soil Map-Orange County and Part of Riverside County, California

Map Unit Legend

	Orange County and Part of Riverside County, California (CA678)										
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI								
133	Botella clay loam, 9 to 15 percent slopes	21.7	48.9%								
135	Capistrano sandy loam, 2 to 9 percent slopes	6.0	13.5%								
146	Corralitos loamy sand	5.1	11.5%								
147	Corralitos loamy sand, moderately fine substratum	4.5	10.1%								
175	Myford sandy loam, 9 to 15 percent slopes	0.0	0.1%								
177	Myford sandy loam, 9 to 30 percent slopes, eroded	3.2	7.2%								
191	Riverwash	0.3	0.8%								
200	Soper loam, 30 to 50 percent slopes	3.6	8.0%								
Totals for Area of Interest		44.5	100.0%								

Engineering Properties

This table gives the engineering classifications and the range of engineering properties for the layers of each soil in the survey area.

Hydrologic soil group is a group of soils having similar runoff potential under similar storm and cover conditions. The criteria for determining Hydrologic soil group is found in the National Engineering Handbook, Chapter 7 issued May 2007(http://directives.sc.egov.usda.gov/OpenNonWebContent.aspx? content=17757.wba). Listing HSGs by soil map unit component and not by soil series is a new concept for the engineers. Past engineering references contained lists of HSGs by soil series. Soil series are continually being defined and redefined, and the list of soil series names changes so frequently as to make the task of maintaining a single national list virtually impossible. Therefore, the criteria is now used to calculate the HSG using the component soil properties and no such national series lists will be maintained. All such references are obsolete and their use should be discontinued. Soil properties that influence runoff potential are those that influence the minimum rate of infiltration for a bare soil after prolonged wetting and when not frozen. These properties are depth to a seasonal high water table, saturated hydraulic conductivity after prolonged wetting, and depth to a layer with a very slow water transmission rate. Changes in soil properties caused by land management or climate changes also cause the hydrologic soil group to change. The influence of ground cover is treated independently. There are four hydrologic soil groups, A, B, C, and D, and three dual groups, A/D, B/D, and C/D. In the dual groups, the first letter is for drained areas and the second letter is for undrained areas.

The four hydrologic soil groups are described in the following paragraphs:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

Depth to the upper and lower boundaries of each layer is indicated.

Texture is given in the standard terms used by the U.S. Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is 15 percent or more, an appropriate modifier is added, for example, "gravelly."

Classification of the soils is determined according to the Unified soil classification system (ASTM, 2005) and the system adopted by the American Association of State Highway and Transportation Officials (AASHTO, 2004).

The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to particle-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC; silty and clayey soils as ML, CL, OL, MH, CH, and OH; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification, for example, CL-ML.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil that is less than 3 inches in diameter is classified in one of seven groups from A-1 through A-7 on the basis of particle-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

If laboratory data are available, the A-1, A-2, and A-7 groups are further classified as A-1-a, A-1-b, A-2-4, A-2-5, A-2-6, A-2-7, A-7-5, or A-7-6. As an additional refinement, the suitability of a soil as subgrade material can be indicated by a group index number. Group index numbers range from 0 for the best subgrade material to 20 or higher for the poorest.

Percentage of rock fragments larger than 10 inches in diameter and 3 to 10 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages are estimates determined mainly by converting volume percentage in the field to weight percentage. Three values are provided to identify the expected Low (L), Representative Value (R), and High (H).

Percentage (of soil particles) passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of 4.76, 2.00, 0.420, and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area and in nearby areas and on estimates made in the field. Three values are provided to identify the expected Low (L), Representative Value (R), and High (H).

Liquid limit and *plasticity index* (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination. Three values are provided to identify the expected Low (L), Representative Value (R), and High (H).

References:

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

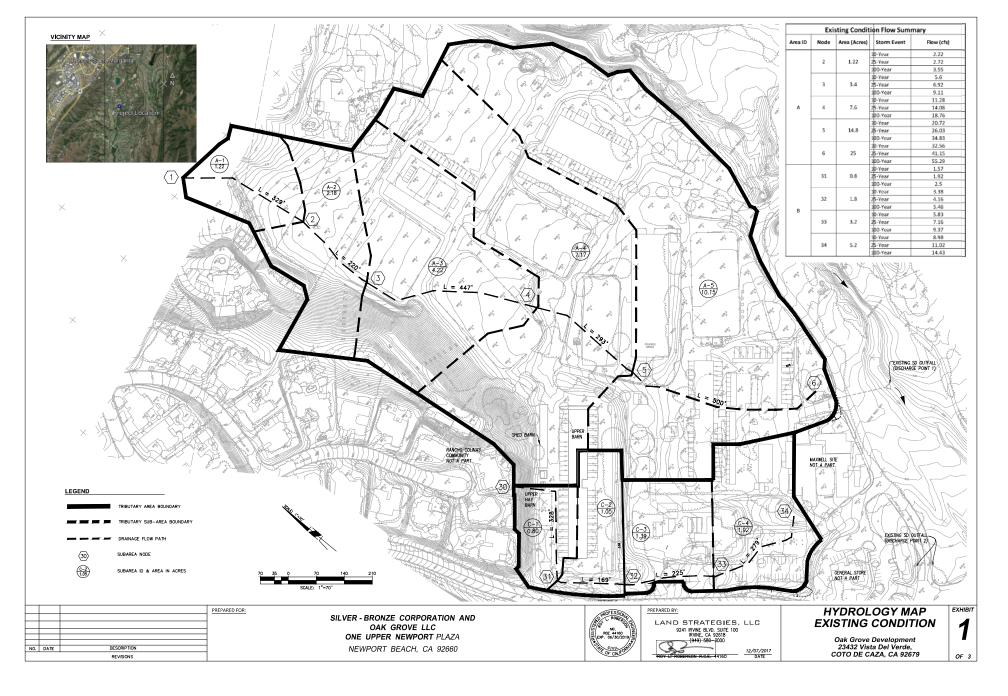
Report—Engineering Properties

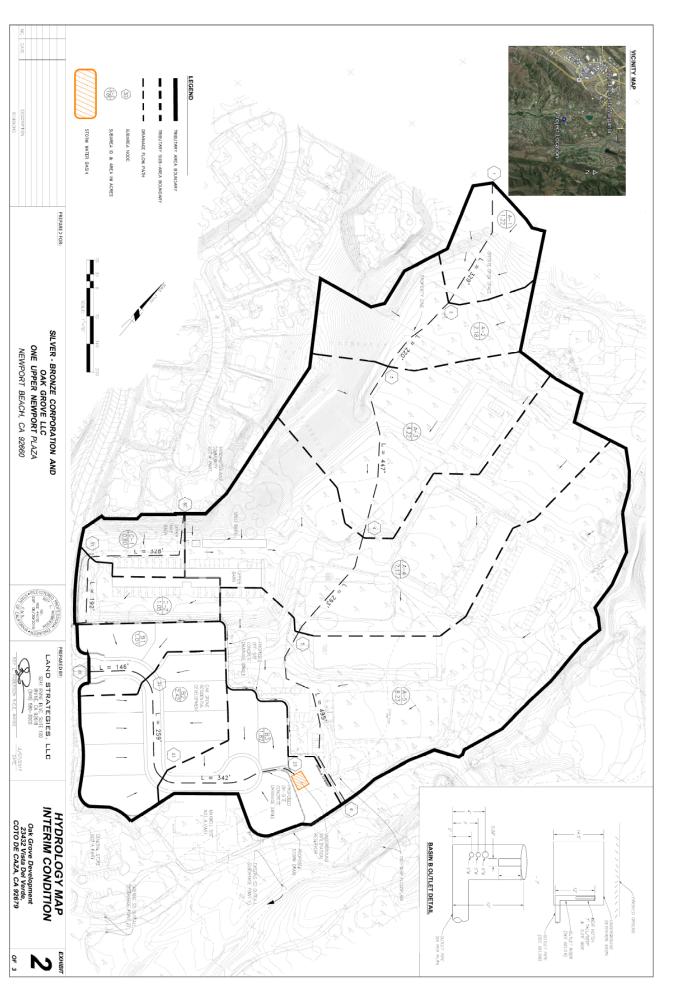
Absence of an entry indicates that the data were not estimated. The asterisk '*' denotes the representative texture; other possible textures follow the dash. The criteria for determining the hydrologic soil group for individual soil components is found in the National Engineering Handbook, Chapter 7 issued May 2007(http://directives.sc.egov.usda.gov/ OpenNonWebContent.aspx?content=17757.wba). Three values are provided to identify the expected Low (L), Representative Value (R), and High (H).

			Engir	neering Properties–O	range Cour	ity and Part	of Rivers	ide Count	y, Califorı	nia				
Map unit symbol and	Pct. of	Hydrolo	Depth	USDA texture	Classi	fication	Pct Fragments		Percentage passing sieve number—					
soil name	map unit	gic group			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	- limit	y index
			In				L-R-H	L-R-H	L-R-H	L-R-H	L-R-H	L-R-H	L-R-H	L-R-H
133—Botella clay loam, 9 to 15 percent slopes														
Botella	85	С	0-8	Clay loam	CL	A-6, A-7	0- 0- 0	0- 0- 0	83-90-1 00	62-79-1 00	56-72- 93	44-56- 73	41-47 -53	19-20-2 1
			8-35	Silty clay loam, clay loam	CL	A-6, A-7	0- 0- 0	0- 0- 0	90-95-1 00	76-87-1 00	74-86-1 00	65-77- 91	41-45 -49	21-23-2 5
			35-66	Sandy clay loam, clay loam, loam	CL	A-6, A-7	0- 0- 0	0- 0- 0	90-95-1 00	76-86-1 00	62-75- 92	34-43- 55	33-39 -45	13-17-2 1
135—Capistrano sandy loam, 2 to 9 percent slopes														
Capistrano	80	A	0-27	Sandy loam	SM	A-2, A-4	0- 0- 0	0- 0- 0	95-97-1 00	90-93-1 00	65-72- 82	30-36- 44	21-28 -35	4-8 -12
			27-65	Fine sandy loam, sandy loam, coarse sandy loam	SM	A-2, A-4	0- 0- 0	0- 0- 0	95-97-1 00	90-93-1 00	79-86- 98	31-37- 44	19-24 -29	4-8 -12

	Engineering Properties–Orange County and Part of Riverside County, California													
Map unit symbol and	Pct. of	Hydrolo	Depth	USDA texture	Classi	fication	Pct Fragments		Percent	age passi		Plasticit		
soil name	map unit	gic group			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	y index
			In				L-R-H	L-R-H	L-R-H	L-R-H	L-R-H	L-R-H	L-R-H	L-R-H
146—Corralitos loamy sand														
Corralitos	65	A	0-9	Loamy sand	SM	A-1, A-2	0- 0- 0	0- 0- 0	95-97-1 00	79-87-1 00	59-68- 81	20-25- 31	0-0 -22	NP-0 -2
			9-60	Stratified sand to loamy sand	SM	A-1, A-2	0- 0- 0	0- 0- 0	95-98-1 00	80-90-1 00	40-65- 90	5-18- 30	5-18 -30	NP-3 -5
147—Corralitos loamy sand, moderately fine substratum														
Corralitos	75	A	0-10	Loamy sand	SM	A-2	0- 0- 0	0- 0- 0	96-97-1 00	75-86-1 00	56-67- 81	19-24- 31	0-0 -20	NP-0 -2
			10-40	Loamy sand, loamy fine sand	SM	A-2	0- 0- 0	0- 0- 0	96-97-1 00	75-86-1 00	57-67- 81	19-24- 31	0-0 -19	NP-0 -2
			40-46	Silt loam, silty clay Ioam	ML	A-4, A-6	0- 0- 0	0- 0- 0	96-97-1 00	75-86-1 00	68-84-1 00	59-75- 94	31-38 -46	13-19-2 5
			46-80	Stratified sand to fine sand to loamy sand	SM, SP- SM	A-1, A-2, A-3	0- 0- 0	0- 0- 0	95-98-1 00	75-88-1 00	40-60- 80	5-20- 35	0-0 -0	NP

Engineering Properties–Orange County and Part of Riverside County, California														
Map unit symbol and	Pct. of	Hydrolo	Depth	USDA texture	Classi	fication	Pct Fragments		Percenta	age passi	Liquid	Plasticit		
soil name	map unit	gic group			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	y index
			In				L-R-H	L-R-H	L-R-H	L-R-H	L-R-H	L-R-H	L-R-H	L-R-H
175—Myford sandy loam, 9 to 15 percent slopes														
Myford	85	D	0-12	Sandy loam	CL-ML, ML, SC- SM, SM	A-2, A-4	0- 0- 0	0- 0- 0	100-100 -100	100-100 -100	73-77- 80	35-39- 42	17-21 -26	2-5 -7
			12-18	Sandy clay	CL, SC	A-6, A-7	0- 0- 0	0- 0- 0	100-100 -100	100-100 -100	78-83- 88	48-53- 58	47-53 -59	25-29-3 3
			18-28	Sandy clay loam, clay loam	CL, SC	A-6, A-7	0- 0- 0	0- 0- 0	100-100 -100	100-100 -100	82-87- 92	45-50- 55	34-41 -47	14-18-2 2
			28-71	Sandy clay loam, clay loam	CL, SC	A-6, A-7	0- 0- 0	0- 0- 0	100-100 -100	100-100 -100	82-87- 92	45-50- 55	31-36 -42	13-17-2 1
			71-79	Sandy loam	CL-ML, ML, SC- SM, SM	A-2, A-4	0- 0- 0	0- 0- 0	100-100 -100	100-100 -100	74-76- 79	36-38- 41	20-23 -26	6-8 -10
177—Myford sandy loam, 9 to 30 percent slopes, eroded														
Myford	85	с	0-7	Sandy loam	SC-SM	A-4	0- 0- 0	0- 0- 0	100-100 -100	100-100 -100	73-77- 80	35-39- 42	17-22 -25	2-5 -7
			7-11	Sandy clay	СН	A-7-6	0- 0- 0	0- 0- 0	100-100 -100	100-100 -100	81-86- 91	51-56- 61	47-53 -59	25-28-3 2
			11-21	Clay loam, sandy clay loam	CL	A-6	0- 0- 0	0- 0- 0	100-100 -100	100-100 -100	82-87- 92	47-52- 57	32-38 -44	13-17-2 1
			21-64	Sandy clay loam, clay loam	CL	A-6	0- 0- 0	0- 0- 0	100-100 -100	100-100 -100	82-87- 92	47-52- 57	30-35 -41	13-17-2 1
			64-79	Sandy loam	SC	A-4	0- 0- 0	0- 0- 0	100-100 -100	100-100 -100	74-76- 79	36-38- 41	21-23 -25	6-8 -10




	Engineering Properties–Orange County and Part of Riverside County, California													
Map unit symbol and	Pct. of	Hydrolo	Depth	epth USDA texture	Classification		Pct Fragments		Percent	age passi	-	Plasticit		
soil name	map unit	gic group			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	y index
			In				L-R-H	L-R-H	L-R-H	L-R-H	L-R-H	L-R-H	L-R-H	L-R-H
191—Riverwash														
Riverwash	100		0-6	Gravelly sand	SP, SP- SM, SW, SW-SM	A-3, A-1	0- 3- 5	0- 3- 5	80-90-1 00	75-88-1 00	30-45- 60	0- 5- 10	0-0 -0	NP
			6-60	Stratified gravelly coarse sand to sandy loam	SM, SP, SP-SM	A-1, A-2, A-3	0- 3- 5	0- 3- 5	80-90-1 00	75-88-1 00	40-55- 70	0-10- 20	0-0 -0	NP
200—Soper loam, 30 to 50 percent slopes														
Soper	65	С	0-9	Loam	ML, SC- SM, SM, CL	A-4	0- 0- 0	0- 3- 5	90-95-1 00	76-86-1 00	63-77- 94	45-56- 70	27-35 -43	9-13-17
			9-30	Gravelly clay loam	SC, CL	A-6, A-7	0- 0- 0	0- 8- 13	84-89- 96	74-84- 96	64-77- 93	50-61- 74	35-41 -46	17-21-2 5
			30-59	Weathered bedrock	_		_	_	_	_	_	_	—	_

Data Source Information

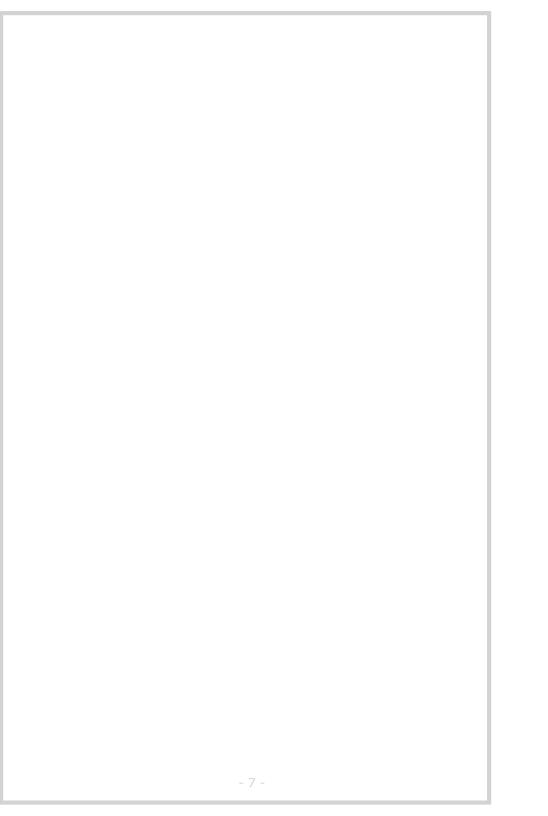
Soil Survey Area: Orange County and Part of Riverside County, California Survey Area Data: Version 10, Sep 30, 2016

B. APPENDIX – HYDROLOGY RESULTS

EXISTING CONDITION

<pre>************************************</pre>	<pre>SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.417 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.306 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER "OPEN BRUSH" B 0.78 0.30 1.000 66 13.42 NATURAL FAIR COVER "OPEN BRUSH" C 0.44 0.25 1.000 77 13.42 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.28 SUBAREA AVERAGE PERVIOUS AREA FRACTION, AP = 1.000 SUBAREA RUNOFF(CFS) = 2.22 TOTAL AREA(ACRES) = 1.22 PEAK FLOW RATE(CFS) = 2.22</pre>
*************************** DESCRIPTION OF STUDY *******************************	****
* OAK GROVE HYDROLOGY *	FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 51
* 10-YEAR STORM EVENT - EXISTING CONDITIONS *	
* AUGUST 2017 *	>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<
************************	>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
FILE NAME: EOAK10.DAT TIME/DATE OF STUDY: 18:39 08/14/2017	ELEVATION DATA: UPSTREAM(FEET) = 861.50 DOWNSTREAM(FEET) = 859.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 220.00 CHANNEL SLOPE = 0.0086 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 4.000
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:	MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.110
TIME-OF-CONCENTRATION MODEL	SUBAREA LOSS RATE DATA (AMC II):
	DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
USER SPECIFIED STORM EVENT (YEAR) = 10.00	LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00	NATURAL FAIR COVER
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95	"OPEN BRUSH" B 1.26 0.30 1.000 66
DATA BANK RAINFALL USED	NATURAL FAIR COVER "OPEN BRUSH" C 0.92 0.25 1.000 77
ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD	"OPEN BRUSH" C 0.92 0.25 1.000 77 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.28
USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL	SUBAREA AVERAGE PERVIOUS ACEA FRACTION, Ap = 1.000
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING	TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 4.02
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR	TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 1.63
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (N)	AVERAGE FLOW DEPTH (FEET) = 0.23 TRAVEL TIME (MIN.) = 2.25
	Tc(MIN.) = 15.66
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150	SUBAREA AREA (ACRES) = 2.18 SUBAREA RUNOFF (CFS) = 3.59
	EFFECTIVE AREA(ACRES) = 3.40 AREA-AVERAGED Fm(INCH/HR) = 0.28
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:	AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 1.00
1. Relative Flow-Depth = 1.00 FEET	TOTAL AREA(ACRES) = 3.4 PEAK FLOW RATE(CFS) = 5.60
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)	END OF SUBAREA CHANNEL FLOW HYDRAULICS:
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN	DEPTH (FEET) = 0.28 FLOW VELOCITY (FEET/SEC.) = 1.82
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*	LONGEST FLOWPATH FROM NODE 1.00 TO NODE $3.00 = 550.00$ FEET.
*USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED	

***************************************	FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 51
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21	
	>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<	>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
	ELEVATION DATA: UPSTREAM(FEET) = 859.60 DOWNSTREAM(FEET) = 848.50
INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00	CHANNEL LENGTH THRU SUBAREA (FEET) = 447.00 CHANNEL SLOPE = 0.0248
ELEVATION DATA: UPSTREAM(FEET) = 876.00 DOWNSTREAM(FEET) = 861.50	CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 4.000
	MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20	<pre>* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.940</pre>
- 1 -	- 2 -
	- / -


SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Fp Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" А 1.79 0.40 1.000 46 NATURAL FAIR COVER 0.94 0.30 "OPEN BRUSH" В 1.000 66 NATURAL FAIR COVER "OPEN BRUSH" С 1.25 0.25 1.000 77 0.13 0.40 0.100 32 COMMERCIAL А 0.100 56 COMMERCIAL В 0.12 0.30 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.33 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.947 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.70 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.00 AVERAGE FLOW DEPTH (FEET) = 0.26 TRAVEL TIME (MIN.) = 2.48 Tc(MIN.) = 18.15SUBAREA AREA(ACRES) = 4.23 SUBAREA RUNOFF(CFS) = 6.20 EFFECTIVE AREA (ACRES) = 7.63 AREA-AVERAGED Fm (INCH/HR) = 0.30AREA-AVERAGED Fp (INCH/HR) = 0.31 AREA-AVERAGED Ap = 0.97TOTAL AREA (ACRES) = 7.6 PEAK FLOW RATE (CFS) = 11.28 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.31 FLOW VELOCITY(FEET/SEC.) = 3.26 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 997.00 FEET. FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 848.50 DOWNSTREAM(FEET) = 841.80 CHANNEL LENGTH THRU SUBAREA (FEET) = 293.00 CHANNEL SLOPE = 0.0229 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 4.000MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 1.862 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fρ Ąр SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER 2.55 1.000 "OPEN BRUSH" А 0.40 46 NATURAL FAIR COVER "OPEN BRUSH" В 3.69 0.30 1.000 66 NATURAL FAIR COVER "OPEN BRUSH" С 0.48 0.25 1.000 77 32 COMMERCIAL А 0.22 0.40 0.100 0.23 0.30 0.100 56 COMMERCIAL В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.33 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.944TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 16.27 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.65 AVERAGE FLOW DEPTH (FEET) = 0.39 TRAVEL TIME (MIN.) = 1.34 Tc(MIN.) = 19.48SUBAREA AREA (ACRES) = 7.17 SUBAREA RUNOFF (CFS) = 9.98 EFFECTIVE AREA(ACRES) = 14.80 AREA-AVERAGED Fm(INCH/HR) = 0.31 AREA-AVERAGED Fp (INCH/HR) = 0.32 AREA-AVERAGED Ap = 0.96TOTAL AREA(ACRES) = 14.8 PEAK FLOW RATE(CFS) = 20.72

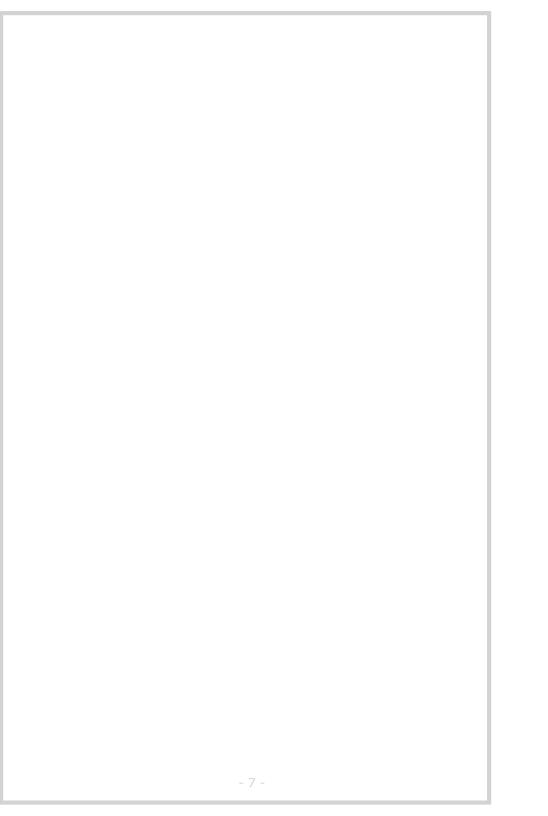
END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.45 FLOW VELOCITY(FEET/SEC.) = 3.95 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 1290.00 FEET. ********** FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 841.80 DOWNSTREAM(FEET) = 835.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 500.00 CHANNEL SLOPE = 0.0136 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 4.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 1.747 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOTL AREA SCS Fp Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL FAIR COVER "OPEN BRUSH" А 1.23 0.40 1.000 46 NATURAL FAIR COVER В 7.82 0.30 1.000 "OPEN BRUSH" 66 NATURAL FAIR COVER 0.03 "OPEN BRUSH" D 0.20 1.000 83 COMMERCIAL 0.31 0.40 0.100 32 Α 0.76 0.30 0.100 56 COMMERCIAL В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.31 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.905 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 27.41 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.64 AVERAGE FLOW DEPTH (FEET) = 0.61 TRAVEL TIME (MIN.) = 2.29 Tc(MIN.) = 21.77SUBAREA AREA(ACRES) = 10.15 SUBAREA RUNOFF(CFS) = 13.37 EFFECTIVE AREA(ACRES) = 24.95 AREA-AVERAGED Fm(INCH/HR) = 0.30 AREA-AVERAGED Fp (INCH/HR) = 0.32 AREA-AVERAGED Ap = 0.94TOTAL AREA(ACRES) = 25.0 PEAK FLOW RATE(CFS) = 32.56 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.67 FLOW VELOCITY(FEET/SEC.) = 3.86 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 1790.00 FEET. +-----I START AREA B | NEW SUBAREA RUN I AUGUST 2017 ***** FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH (FEET) = 328.00 ELEVATION DATA: UPSTREAM(FEET) = 876.50 DOWNSTREAM(FEET) = 850.00 $T_{C} = K^{*}[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**0.20}$

- 4

SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.849 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.476 SUBAREA TC AND LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp qA SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER 0.80 "OPEN BRUSH" В 0.30 1.000 66 11.85 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA RUNOFF(CFS) = 1.57 TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = 1.57 FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 850.00 DOWNSTREAM(FEET) = 847.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 192.00 CHANNEL SLOPE = 0.0156 CHANNEL BASE (FEET) = 3.00 "Z" FACTOR = 2.000MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.330 SUBAREA LOSS RATE DATA (AMC II): Ap DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL FAIR COVER "OPEN BRUSH" В 1.05 0.30 1.000 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.53 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.41 AVERAGE FLOW DEPTH (FEET) = 0.29 TRAVEL TIME (MIN.) = 1.33 Tc(MIN.) = 13.18SUBAREA AREA(ACRES) = 1.05 SUBAREA RUNOFF (CFS) = 1.92EFFECTIVE AREA(ACRES) = 1.85 AREA-AVERAGED Fm(INCH/HR) = 0.30 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 1.8 PEAK FLOW RATE(CFS) = 3.38 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.35 FLOW VELOCITY(FEET/SEC.) = 2.64 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00 = 520.00 FEET. ***** FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 846.00 DOWNSTREAM(FEET) = 838.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 225.00 CHANNEL SLOPE = 0.0356 CHANNEL BASE (FEET) = 5.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.222 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ар SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL

"8-10 DWELLINGS/ACRE" в 1.39 0.30 0.400 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.400 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.70 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.31 AVERAGE FLOW DEPTH(FEET) = 0.25 TRAVEL TIME(MIN.) = 1.13 Tc(MIN.) = 14.31SUBAREA AREA(ACRES) = 1.39 SUBAREA RUNOFF(CFS) = 2.63 EFFECTIVE AREA(ACRES) = 3.24 AREA-AVERAGED Fm(INCH/HR) = 0.22 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.74TOTAL AREA(ACRES) = 3.2 PEAK FLOW RATE(CFS) = 5.83 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.28 FLOW VELOCITY(FEET/SEC.) = 3.60 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 33.00 = 745.00 FEET. FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 TS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 838.00 DOWNSTREAM(FEET) = 830.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 279.00 CHANNEL SLOPE = 0.0287 CHANNEL BASE (FEET) = 5.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.117 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "8-10 DWELLINGS/ACRE" В 1.92 0.30 0.400 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.400 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.56 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.69 AVERAGE FLOW DEPTH (FEET) = 0.34 TRAVEL TIME (MIN.) = 1.26 Tc(MIN.) = 15.57SUBAREA AREA (ACRES) = 1.92SUBAREA RUNOFF(CFS) = 3.45EFFECTIVE AREA (ACRES) = 5.16 AREA-AVERAGED Fm (INCH/HR) = 0.18 AREA-AVERAGED Fp (INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.62TOTAL AREA (ACRES) = 5.2 PEAK FLOW RATE(CFS) = 8.98 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.38 FLOW VELOCITY(FEET/SEC.) = 3.86 30.00 TO NODE 34.00 = 1024.00 FEET. LONGEST FLOWPATH FROM NODE _____ END OF STUDY SUMMARY: TOTAL AREA (ACRES) = 5.2 TC(MIN.) = 15.57EFFECTIVE AREA (ACRES) = 5.16 AREA-AVERAGED Fm (INCH/HR) = 0.18 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.615 PEAK FLOW RATE(CFS) = 8.98 _____ _____ END OF RATIONAL METHOD ANALYSIS

<pre>************************************</pre>	<pre>SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.417 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.759 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER "OPEN BRUSH" B 0.78 0.30 1.000 66 13.42 NATURAL FAIR COVER "OPEN BRUSH" C 0.44 0.25 1.000 77 13.42 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.28 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA RUNOFF(CFS) = 2.72 TOTAL AREA(ACRES) = 1.22 PEAK FLOW RATE(CFS) = 2.72</pre>
***************************** DESCRIPTION OF STUDY *****************************	***************************************
* OAK GROVE HYDROLOGY *	FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 51
* 25-YEAR STORM EVENT - EXISTING CONDITIONS *	
* AUGUST 2017 * ***********************************	>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
FILE NAME: EOAK25.DAT TIME/DATE OF STUDY: 18:38 08/14/2017	ELEVATION DATA: UPSTREAM(FEET) = 861.50 DOWNSTREAM(FEET) = 859.60
IIME/DAIE OF SIUDI: 18:38 08/14/2017	CHANNEL LENGTH THRU SUBAREA(FEET) = 220.00 CHANNEL SLOPE = 0.0086 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 4.000
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:	MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00
	* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541
TIME-OF-CONCENTRATION MODEL	SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
USER SPECIFIED STORM EVENT(YEAR) = 25.00	LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00	NATURAL FAIR COVER
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95	"OPEN BRUSH" B 1.26 0.30 1.000 66
DATA BANK RAINFALL USED *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*	NATURAL FAIR COVER "OPEN BRUSH" C 0.92 0.25 1.000 77
	SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.28
USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL	SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING	TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.94
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (T) (n)	TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.75 AVERAGE FLOW DEPTH(FEET) = 0.26 TRAVEL TIME(MIN.) = 2.10
NO. (FI) (FI) SIDE / SIDE / WAI (FI) (FI) (FI) (II)	Tc (MIN.) = 15.52
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150	SUBAREA AREA (ACRES) = 2.18 SUBAREA RUNOFF (CFS) = 4.44
	EFFECTIVE AREA(ACRES) = 3.40 AREA-AVERAGED Fm(INCH/HR) = 0.28
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:	AREA-AVERAGED Fp (INCH/HR) = 0.28 AREA-AVERAGED Ap = 1.00
 Relative Flow-Depth = 1.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 	TOTAL AREA(ACRES) = 3.4 PEAK FLOW RATE(CFS) = 6.92
2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)	END OF SUBAREA CHANNEL FLOW HYDRAULICS:
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN	DEPTH(FEET) = 0.31 FLOW VELOCITY(FEET/SEC.) = 1.99
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*	LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 550.00 FEET.
*USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED	*****
************************	FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 51
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21	
	>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<	>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
	ELEVATION DATA: UPSTREAM(FEET) = 859.60 DOWNSTREAM(FEET) = 848.50
INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00	CHANNEL LENGTH THRU SUBAREA (FEET) = 447.00 CHANNEL SLOPE = 0.0248
ELEVATION DATA: UPSTREAM(FEET) = 876.00 DOWNSTREAM(FEET) = 861.50	CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 4.000
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20	MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.348
	20 IDAR ANALADD INIDAULI (IRON/IRC) - 2.030
- 1 -	- 2 -


SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Fp Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" А 1.79 0.40 1.000 46 NATURAL FAIR COVER 0.94 0.30 "OPEN BRUSH" В 1.000 66 NATURAL FAIR COVER "OPEN BRUSH" С 1.25 0.25 1.000 77 0.13 0.40 0.100 32 COMMERCIAL A 0.100 56 COMMERCIAL В 0.12 0.30 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.33 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.947 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.81 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.21 AVERAGE FLOW DEPTH (FEET) = 0.30 TRAVEL TIME (MIN.) = 2.32 Tc(MIN.) = 17.84SUBAREA AREA(ACRES) = 4.23 SUBAREA RUNOFF(CFS) = 7.75 EFFECTIVE AREA (ACRES) = 7.63 AREA-AVERAGED Fm (INCH/HR) = 0.30AREA-AVERAGED Fp (INCH/HR) = 0.31 AREA-AVERAGED Ap = 0.97TOTAL AREA (ACRES) = 7.6 PEAK FLOW RATE (CFS) = 14.08 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.35 FLOW VELOCITY(FEET/SEC.) = 3.55 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 997.00 FEET. FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 848.50 DOWNSTREAM(FEET) = 841.80 CHANNEL LENGTH THRU SUBAREA (FEET) = 293.00 CHANNEL SLOPE = 0.0229 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 4.000MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 2.261 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fρ Ąр SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER 2.55 1.000 "OPEN BRUSH" А 0.40 46 NATURAL FAIR COVER "OPEN BRUSH" В 3.69 0.30 1.000 66 NATURAL FAIR COVER "OPEN BRUSH" С 0.48 0.25 1.000 77 32 COMMERCIAL А 0.22 0.40 0.100 0.23 0.30 0.100 56 COMMERCIAL В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.33 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.944TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 20.36 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.94 AVERAGE FLOW DEPTH (FEET) = 0.44 TRAVEL TIME (MIN.) = 1.24 Tc(MIN.) = 19.08SUBAREA AREA (ACRES) = 7.17 SUBAREA RUNOFF (CFS) = 12.55 EFFECTIVE AREA(ACRES) = 14.80 AREA-AVERAGED Fm(INCH/HR) = 0.31 AREA-AVERAGED Fp (INCH/HR) = 0.32 AREA-AVERAGED Ap = 0.96TOTAL AREA(ACRES) = 14.8 PEAK FLOW RATE(CFS) = 26.03

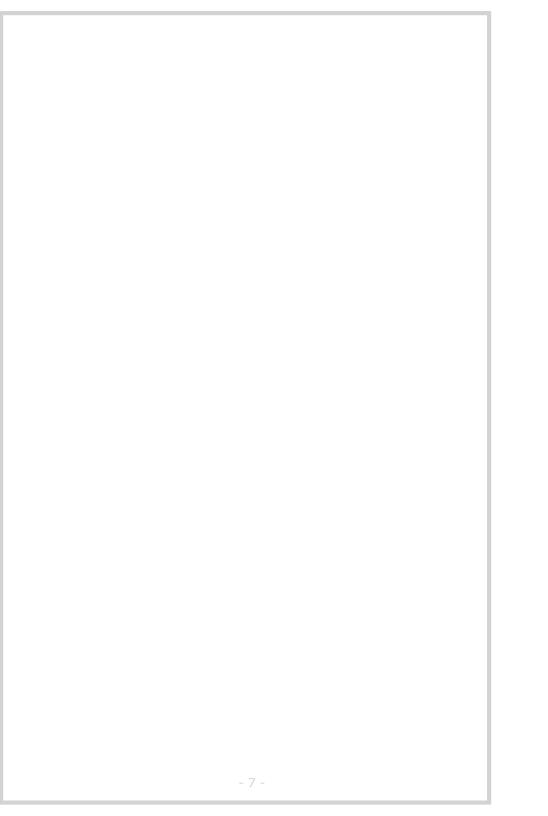
END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.51 FLOW VELOCITY(FEET/SEC.) = 4.27 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 1290.00 FEET. ********** FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 841.80 DOWNSTREAM(FEET) = 835.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 500.00 CHANNEL SLOPE = 0.0136 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 4.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 2.129SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOTL AREA SCS Fp Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" А 1.23 0.40 1.000 46 NATURAL FAIR COVER В 7.82 0.30 1.000 "OPEN BRUSH" 66 NATURAL FAIR COVER 0.03 "OPEN BRUSH" D 0.20 1.000 83 COMMERCIAL 0.31 0.40 0.100 32 А 0.76 0.30 0.100 56 COMMERCIAL В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.31 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.905 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 34.47 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.92 AVERAGE FLOW DEPTH (FEET) = 0.69 TRAVEL TIME (MIN.) = 2.13 Tc(MIN.) = 21.20SUBAREA AREA(ACRES) = 10.15 SUBAREA RUNOFF(CFS) = 16.86 EFFECTIVE AREA (ACRES) = 24.95 AREA-AVERAGED Fm (INCH/HR) = 0.30 AREA-AVERAGED Fp (INCH/HR) = 0.32 AREA-AVERAGED Ap = 0.94TOTAL AREA(ACRES) = 25.0 PEAK FLOW RATE(CFS) = 41.15 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.76 FLOW VELOCITY(FEET/SEC.) = 4.15 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 1790.00 FEET. +-----I START AREA B | NEW SUBAREA RUN I AUGUST 2017 ***** FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH (FEET) = 328.00 ELEVATION DATA: UPSTREAM(FEET) = 876.50 DOWNSTREAM(FEET) = 850.00 $T_{C} = K^{*}[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**0.20}$

- 4

SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.849 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 2.960 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp qA SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER 0.80 "OPEN BRUSH" В 0.30 1.000 66 11.85 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA RUNOFF(CFS) = 1,92 TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = 1.92 FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 850.00 DOWNSTREAM(FEET) = 847.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 192.00 CHANNEL SLOPE = 0.0156 CHANNEL BASE (FEET) = 3.00 "Z" FACTOR = 2.000MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.796 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL FAIR COVER "OPEN BRUSH" В 1.05 0.30 1.000 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.10 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.55 AVERAGE FLOW DEPTH (FEET) = 0.33 TRAVEL TIME (MIN.) = 1.25 Tc(MIN.) = 13.10SUBAREA AREA(ACRES) = 1.05 SUBAREA RUNOFF (CFS) = 2.36EFFECTIVE AREA(ACRES) = 1.85 AREA-AVERAGED Fm(INCH/HR) = 0.30 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 1.8 PEAK FLOW RATE(CFS) = 4.16 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.39 FLOW VELOCITY(FEET/SEC.) = 2.85 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00 = 520.00 FEET. ***** FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 846.00 DOWNSTREAM(FEET) = 838.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 225.00 CHANNEL SLOPE = 0.0356 CHANNEL BASE (FEET) = 5.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.677 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL

"8-10 DWELLINGS/ACRE" в 1.39 0.30 0.400 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.400 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.76 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.56 AVERAGE FLOW DEPTH(FEET) = 0.28 TRAVEL TIME(MIN.) = 1.05 Tc(MIN.) = 14.16SUBAREA AREA(ACRES) = 1.39 SUBAREA RUNOFF (CFS) = 3.20 EFFECTIVE AREA(ACRES) = 3.24 AREA-AVERAGED Fm(INCH/HR) = 0.22 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.74TOTAL AREA(ACRES) = 3.2 PEAK FLOW RATE(CFS) = 7.16 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.31 FLOW VELOCITY(FEET/SEC.) = 3.89 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 33.00 = 745.00 FEET. FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 TS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 838.00 DOWNSTREAM(FEET) = 830.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 279.00 CHANNEL SLOPE = 0.0287 CHANNEL BASE (FEET) = 5.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 2.557 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "8-10 DWELLINGS/ACRE" В 1.92 0.30 0.400 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.400 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.26 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.92 AVERAGE FLOW DEPTH (FEET) = 0.38 TRAVEL TIME (MIN.) = 1.19 Tc(MIN.) = 15.34SUBAREA AREA (ACRES) = 1.92SUBAREA RUNOFF (CFS) = 4.21EFFECTIVE AREA (ACRES) = 5.16 AREA-AVERAGED Fm (INCH/HR) = 0.18 AREA-AVERAGED Fp (INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.62TOTAL AREA (ACRES) = 5.2 PEAK FLOW RATE(CFS) = 11.02 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.42 FLOW VELOCITY(FEET/SEC.) = 4.14 30.00 TO NODE 34.00 = 1024.00 FEET. LONGEST FLOWPATH FROM NODE _____ END OF STUDY SUMMARY: TOTAL AREA (ACRES) = 5.2 TC(MIN.) = 15.34 EFFECTIVE AREA (ACRES) = 5.16 AREA-AVERAGED Fm (INCH/HR) = 0.18 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.615 PEAK FLOW RATE (CFS) = 11.02_____ _____ END OF RATIONAL METHOD ANALYSIS

<pre>************************************</pre>	SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.417 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.515 SUBAREA TC AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER "OPEN BRUSH" B 0.78 0.30 1.000 84 13.42 NATURAL FAIR COVER "OPEN BRUSH" C 0.44 0.25 1.000 92 13.42 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.28 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA RUNOFF(CFS) = 3.55 TOTAL AREA(ACRES) = 1.22 PEAK FLOW RATE(CFS) = 3.55
**************************************	******
* OAK GROVE HYDROLOGY *	FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 51
* 100-YEAR STORM EVENT - EXISTING CONDITIONS *	
* AUGUST 2017 *	>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
***************************************	>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
FILE NAME: EOAK100.DAT TIME/DATE OF STUDY: 18:35 08/14/2017	ELEVATION DATA: UPSTREAM(FEET) = 861.50 DOWNSTREAM(FEET) = 859.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 220.00 CHANNEL SLOPE = 0.0086 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 4.000
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:	MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00
TIME-OF-CONCENTRATION MODEL	* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.257 SUBAREA LOSS RATE DATA(AMC III):
TIME OF CONCENTRATION MODED	DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
USER SPECIFIED STORM EVENT(YEAR) = 100.00	LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00	NATURAL FAIR COVER
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95	"OPEN BRUSH" B 1.26 0.30 1.000 84
DATA BANK RAINFALL USED	NATURAL FAIR COVER
ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD	"OPEN BRUSH" C 0.92 0.25 1.000 92
USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)	SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.28 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.47 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.92 AVERAGE FLOW DEPTH(FEET) = 0.30 TRAVEL TIME(MIN.) = 1.91 Tc(MIN.) = 15.32
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150	SUBAREA AREA (ACRES) = 2.18 SUBAREA RUNOFF (CFS) = 5.84 EFFECTIVE AREA (ACRES) = 3.40 AREA-AVERAGED Fm (INCH/HR) = 0.28
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:	AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 1.00
1. Relative Flow-Depth = 1.00 FEET	TOTAL AREA(ACRES) = 3.4 PEAK FLOW RATE(CFS) = 9.11
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)	
<pre>2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)</pre>	END OF SUBAREA CHANNEL FLOW HYDRAULICS:
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN	DEPTH(FEET) = 0.37 FLOW VELOCITY(FEET/SEC.) = 2.15
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*	LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 550.00 FEET.
*USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED	*****
*****	FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 51
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21	
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<	>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<	
INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 ELEVATION DATA: UPSTREAM(FEET) = 876.00 DOWNSTREAM(FEET) = 861.50	ELEVATION DATA: UPSTREAM(FEET) = 859.60 DOWNSTREAM(FEET) = 848.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 447.00 CHANNEL SLOPE = 0.0248 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 4.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20	* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.029


SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Fp Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" А 1.79 0.40 1.000 66 NATURAL FAIR COVER 0.94 0.30 1.000 "OPEN BRUSH" В 84 NATURAL FAIR COVER "OPEN BRUSH" С 1.25 0.25 1.000 92 0.13 0.40 0.100 52 COMMERCIAL А 0.100 76 COMMERCIAL В 0.12 0.30 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.33 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.947 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.29 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.60 AVERAGE FLOW DEPTH(FEET) = 0.35 TRAVEL TIME(MIN.) = 2.07Tc(MIN.) = 17.39SUBAREA AREA(ACRES) = 4.23 SUBAREA RUNOFF(CFS) = 10.34 EFFECTIVE AREA (ACRES) = 7.63 AREA-AVERAGED Fm (INCH/HR) = 0.30AREA-AVERAGED Fp (INCH/HR) = 0.31 AREA-AVERAGED Ap = 0.97TOTAL AREA(ACRES) = 7.6 PEAK FLOW RATE(CFS) = 18.76 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.41 FLOW VELOCITY(FEET/SEC.) = 3.94 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 997.00 FEET. FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 848.50 DOWNSTREAM(FEET) = 841.80 CHANNEL LENGTH THRU SUBAREA (FEET) = 293.00 CHANNEL SLOPE = 0.0229 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 4.000MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.921 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fρ Ąр SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER 2.55 1.000 "OPEN BRUSH" А 0.40 66 NATURAL FAIR COVER "OPEN BRUSH" В 3.69 0.30 1.000 84 NATURAL FAIR COVER 92 "OPEN BRUSH" С 0.48 0.25 1.000 52 COMMERCIAL А 0.22 0.40 0.100 0.23 0.30 0.100 76 COMMERCIAL В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.33 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.944TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 27.17 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.31AVERAGE FLOW DEPTH (FEET) = 0.52 TRAVEL TIME (MIN.) = 1.13 Tc(MIN.) = 18.52SUBAREA AREA (ACRES) = 7.17 SUBAREA RUNOFF (CFS) = 16.82 EFFECTIVE AREA(ACRES) = 14.80 AREA-AVERAGED Fm(INCH/HR) = 0.31 AREA-AVERAGED Fp (INCH/HR) = 0.32 AREA-AVERAGED Ap = 0.96TOTAL AREA(ACRES) = 14.8 PEAK FLOW RATE(CFS) = 34.83

END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.60 FLOW VELOCITY(FEET/SEC.) = 4.70 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 1290.00 FEET. *********** FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 841.80 DOWNSTREAM(FEET) = 835.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 500.00 CHANNEL SLOPE = 0.0136 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 4.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 100 YEAR RAINFALL INTENSITY (INCH/HR) = 2.759SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOTL AREA SCS Fp Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" А 1.23 0.40 1.000 66 NATURAL FAIR COVER В 7.82 0.30 1.000 "OPEN BRUSH" 84 NATURAL FAIR COVER D 0.03 "OPEN BRUSH" 0.20 1.000 96 COMMERCIAL 0.31 0.40 0.100 52 А 0.76 0.30 0.100 76 COMMERCIAL В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.31 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.905 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 46.15 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.29 AVERAGE FLOW DEPTH (FEET) = 0.81 TRAVEL TIME (MIN.) = 1.94 Tc(MIN.) = 20.47SUBAREA AREA(ACRES) = 10.15 SUBAREA RUNOFF(CFS) = 22.61 EFFECTIVE AREA(ACRES) = 24.95 AREA-AVERAGED Fm(INCH/HR) = 0.30 AREA-AVERAGED Fp (INCH/HR) = 0.32 AREA-AVERAGED Ap = 0.94TOTAL AREA(ACRES) = 25.0 PEAK FLOW RATE(CFS) = 55.29 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.90 FLOW VELOCITY(FEET/SEC.) = 4.55 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 1790.00 FEET. 4-----I START AREA B | NEW SUBAREA RUN I AUGUST 2017 ***** FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH (FEET) = 328.00 ELEVATION DATA: UPSTREAM(FEET) = 876.50 DOWNSTREAM(FEET) = 850.00 $T_{C} = K^{*}[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**0.20}$

- 4

SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.849 * 100 YEAR RAINFALL INTENSITY (INCH/HR) = 3.774 SUBAREA TC AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER 0.80 "OPEN BRUSH" В 0.30 1.000 84 11.85 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 2.50 SUBAREA RUNOFF(CFS) = 0.80 PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 2.50 FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 850.00 DOWNSTREAM(FEET) = 847.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 192.00 CHANNEL SLOPE = 0.0156 CHANNEL BASE (FEET) = 3.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 100 YEAR RAINFALL INTENSITY (INCH/HR) = 3.580 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL FAIR COVER "OPEN BRUSH" В 1.05 0.30 1.000 84 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.05 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.80 AVERAGE FLOW DEPTH (FEET) = 0.38 TRAVEL TIME (MIN.) = 1.14 Tc(MIN.) = 12.99SUBAREA AREA(ACRES) = 1.05 SUBAREA RUNOFF (CFS) = 3.10EFFECTIVE AREA(ACRES) = 1.85 AREA-AVERAGED Fm(INCH/HR) = 0.30 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 1.8 PEAK FLOW RATE(CFS) = 5.46 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.45 FLOW VELOCITY(FEET/SEC.) = 3.09 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00 = 520.00 FEET. ***** FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 846.00 DOWNSTREAM(FEET) = 838.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 225.00 CHANNEL SLOPE = 0.0356 CHANNEL BASE (FEET) = 5.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 100 YEAR RAINFALL INTENSITY (INCH/HR) = 3.436 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL

"8-10 DWELLINGS/ACRE" в 1.39 0.30 0.400 76 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.400 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.54 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.90 AVERAGE FLOW DEPTH(FEET) = 0.32 TRAVEL TIME(MIN.) = 0.96 Tc(MIN.) = 13.95SUBAREA AREA(ACRES) = 1.39 SUBAREA RUNOFF (CFS) = 4.15 EFFECTIVE AREA(ACRES) = 3.24 AREA-AVERAGED Fm(INCH/HR) = 0.22 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.74TOTAL AREA(ACRES) = 3.2 PEAK FLOW RATE(CFS) = 9.37 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.36 FLOW VELOCITY(FEET/SEC.) = 4.23 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 33.00 = 745.00 FEET. FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 838.00 DOWNSTREAM(FEET) = 830.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 279.00 CHANNEL SLOPE = 0.0287 CHANNEL BASE (FEET) = 5.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 100 YEAR RAINFALL INTENSITY (INCH/HR) = 3.292 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "8-10 DWELLINGS/ACRE" В 1.92 0.30 0.400 76 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.400TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.11 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.27 AVERAGE FLOW DEPTH (FEET) = 0.45 TRAVEL TIME (MIN.) = 1.09 Tc(MIN.) = 15.04SUBAREA AREA (ACRES) = 1.92SUBAREA RUNOFF(CFS) = 5.48EFFECTIVE AREA (ACRES) = 5.16 AREA-AVERAGED Fm (INCH/HR) = 0.18 AREA-AVERAGED Fp (INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.62TOTAL AREA (ACRES) = 5.2 PEAK FLOW RATE(CFS) = 14.43 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.49 FLOW VELOCITY(FEET/SEC.) = 4.52 30.00 TO NODE 34.00 = 1024.00 FEET. LONGEST FLOWPATH FROM NODE _____ END OF STUDY SUMMARY: TOTAL AREA (ACRES) = 5.2 TC(MIN.) = 15.04EFFECTIVE AREA (ACRES) = 5.16 AREA-AVERAGED Fm (INCH/HR) = 0.18 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.615 PEAK FLOW RATE (CFS) = 14.43_____ _____ END OF RATIONAL METHOD ANALYSIS

UNMITIGATED FLOW RATES

<pre>************************************</pre>	<pre>SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.417 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.306 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER "OPEN BRUSH" B 0.78 0.30 1.000 66 13.42 NATURAL FAIR COVER "OPEN BRUSH" C 0.44 0.25 1.000 77 13.42 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.28 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA RUNOFF(CFS) = 2.22 TOTAL AREA(ACRES) = 1.22 PEAK FLOW RATE(CFS) = 2.22</pre>
******************************** DESCRIPTION OF STUDY ************************************	**************************************
* JULY 2017 * ***********************************	>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
FILE NAME: OAK10.DAT TIME/DATE OF STUDY: 20:27 07/26/2017	ELEVATION DATA: UPSTREAM(FEET) = 861.50 DOWNSTREAM(FEET) = 859.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 369.00 CHANNEL SLOPE = 0.0068 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 4.000
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:	MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.996
TIME-OF-CONCENTRATION MODEL USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MAINING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n) 	 NO YEAR RAINFALL INTENSITY (INCH/HR) = 1.996 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" A 0.03 0.40 1.000 46 NATURAL FAIR COVER "OPEN BRUSH" B 2.06 0.30 1.000 66 NATURAL FAIR COVER "OPEN BRUSH" C 1.41 0.25 1.000 77 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.28 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.94 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 1.60 AVERAGE FLOW DEPTH (FEET) = 0.28 TRAVEL TIME (MIN.) = 3.84 Tc (MIN.) = 17.26 SUBAREA AREA (ACRES) = 3.50 SUBAREA RUNOFF (CFS) = 5.40 EFFECTIVE AREA (ACRES) = 4.72 AREA-AVERAGED Fm (INCH/HR) = 0.28 AREA-AVERAGED Fp (INCH/HR) = 0.28 AREA-AVERAGED Ap = 1.00 TOTAL AREA (ACRES) = 4.7 PEAK FLOW RATE (CFS) = 7.29 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.35 FLOW VELOCITY (FEET/SEC.) = 1.85 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 699.00 FEET.
**************************************	**************************************
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<	>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 ELEVATION DATA: UPSTREAM(FEET) = 876.00 DOWNSTREAM(FEET) = 861.50 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20	ELEVATION DATA: UPSTREAM(FEET) = 859.00 DOWNSTREAM(FEET) = 844.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 520.00 CHANNEL SLOPE = 0.0288 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 4.000
$TC = K^{(\text{LENGTH}^{3}, 00)} / (\text{ELEVATION CHANGE})^{0.20}$ $-1 -$	CHANNEL BASE (FEET) = $10.00 - 2^{-4}$ FACTOR = $4.000 - 2^{-5}$

MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 AREA-AVERAGED Fp (INCH/HR) = 0.32 AREA-AVERAGED Ap = 0.94* 10 YEAR RAINFALL INTENSITY (INCH/HR) = 1.847 TOTAL AREA (ACRES) = 15.4 PEAK FLOW RATE(CFS) = SUBAREA LOSS RATE DATA(AMC II): END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEVELOPMENT TYPE/ SCS SOTL AREA Fρ Aр SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN DEPTH(FEET) = 0.43 FLOW VELOCITY(FEET/SEC.) = 4.14 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 1444.00 FEET. NATURAL FAIR COVER 1.000 "OPEN BRUSH" Α 3.16 0.40 46 ***** NATURAL FAIR COVER 5.00 TO NODE "OPEN BRUSH" В 1.28 0.30 1.000 FLOW PROCESS FROM NODE 6.00 IS CODE = 3166 NATURAL FAIR COVER С 1.12 0.25 1.000 77 "OPEN BRUSH" >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< COMMERCIAL 0.23 0.40 0.100 32 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< А 56 COMMERCIAL В 0.14 0.30 0.100 _____ ELEVATION DATA: UPSTREAM(FEET) = 838.00 DOWNSTREAM(FEET) = 836.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.35 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.944FLOW LENGTH (FEET) = 142.00 MANNING'S N = 0.013TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.35 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.2 INCHES TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.47 PIPE-FLOW VELOCITY (FEET/SEC.) = 9.25AVERAGE FLOW DEPTH(FEET) = 0.29 TRAVEL TIME(MIN.) = 2.50 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 Tc(MIN.) = 19.76PIPE-FLOW(CFS) = 20.89SUBAREA AREA (ACRES) = 5.93SUBAREA RUNOFF(CFS) = 8.11 PIPE TRAVEL TIME (MIN.) = 0.26 Tc (MIN.) = 20.96EFFECTIVE AREA(ACRES) = 10.65 AREA-AVERAGED Fm(INCH/HR) = 0.31 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 1586.00 FEET. AREA-AVERAGED Fp (INCH/HR) = 0.32 AREA-AVERAGED Ap = 0.97TOTAL AREA(ACRES) = 10.6 PEAK FLOW RATE(CFS) = 14.77 FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 1_____ END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.34 FLOW VELOCITY(FEET/SEC.) = 3.82 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 1219.00 FEET. _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 51 TIME OF CONCENTRATION(MIN.) = 20.96 _____ RAINFALL INTENSITY (INCH/HR) = 1.79 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< AREA-AVERAGED Fm (INCH/HR) = 0.30>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< AREA-AVERAGED Fp(INCH/HR) = 0.32_____ AREA-AVERAGED Ap = 0.94ELEVATION DATA: UPSTREAM(FEET) = 844.00 DOWNSTREAM(FEET) = 838.00 EFFECTIVE STREAM AREA (ACRES) = 15.44 CHANNEL LENGTH THRU SUBAREA (FEET) = 225.00 CHANNEL SLOPE = 0.0267 TOTAL STREAM AREA(ACRES) = 15.44 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 4.000PEAK FLOW RATE(CFS) AT CONFLUENCE = 20.89 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 1.799 SUBAREA LOSS RATE DATA(AMC II): FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 _____ DEVELOPMENT TYPE/ SCS SOIL AREA Fρ qА SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< LAND USE >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< NATURAL FAIR COVER _____ "OPEN BRUSH" А 0.51 0.40 1.000 46 INITIAL SUBAREA FLOW-LENGTH(FEET) = 307.00 NATURAL FAIR COVER "OPEN BRUSH" В 3.42 0.30 1.000 66 ELEVATION DATA: UPSTREAM(FEET) = 861.20 DOWNSTREAM(FEET) = 854.00 NATURAL FAIR COVER "OPEN BRUSH" С 0.13 0.25 1.000 77 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.2032 COMMERCIAL А 0.37 0.40 0.100 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.363 0.100 56 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 3.536 COMMERCIAL В 0.36 0.30 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.31 SUBAREA TC AND LOSS RATE DATA(AMC II): SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.863 DEVELOPMENT TYPE/ SCS SOIL AREA Fρ TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 18.06 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.96 NATURAL FAIR COVER AVERAGE FLOW DEPTH(FEET) = 0.39 TRAVEL TIME(MIN.) = 0.95 "OPEN BRUSH" А 0.07 0.40 Tc(MIN.) = 20.70NATURAL FAIR COVER SUBAREA AREA(ACRES) = 4.79 SUBAREA RUNOFF (CFS) = 6.59"OPEN BRUSH" В 0.82 0.30 EFFECTIVE AREA(ACRES) = 15.44 AREA-AVERAGED Fm(INCH/HR) = 0.30 NATURAL FAIR COVER

qΑ

1.000

1.000

SCS

TC

46 14.78

66 14.78

20.89

SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) =	D 0.03 0.20 1.000 83 14.78 B 0.09 0.30 0.100 56 6.36 LOSS RATE, Fp(INCH/HR) = 0.30 AREA FRACTION, Ap = 0.920 2.96 1.01 PEAK FLOW RATE(CFS) = 2.96
	11.00 TO NODE 12.00 IS CODE = 51
	CHANNEL FLOW<<<<< NREA (EXISTING ELEMENT)<<<<<
CHANNEL LENGTH THRU SUBAF CHANNEL BASE(FEET) = 10 MANNING'S FACTOR = 0.030 * 10 YEAR RAINFALL INTEN SUBAREA LOSS RATE DATA(AM	AC II):
LAND USE	GCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL FAIR COVER "OPEN BRUSH" NATURAL FAIR COVER	A 0.60 0.40 1.000 46
"OPEN BRUSH" COMMERCIAL SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS TRAVEL TIME COMPUTED USIN TRAVEL TIME THRU SUBAREA AVERAGE FLOW DEPTH (FEET) Tc (MIN.) = 8.27 SUBAREA AREA (ACRES) = EFFECTIVE AREA (ACRES) = AREA-AVERAGED Fp (INCH/HR) TOTAL AREA (ACRES) = END OF SUBAREA CHANNEL FI DEPTH (FEET) = 0.21 FLC LONGEST FLOWPATH FROM NOI	B 0.51 0.30 1.000 66 B 0.14 0.30 0.100 56 LOSS RATE, Fp(INCH/HR) = 0.35 AREA FRACTION, Ap = 0.899 NG ESTIMATED FLOW(CFS) = 4.50 BASED ON VELOCITY(FEET/SEC.) = 2.33 = 0.18 TRAVEL TIME(MIN.) = 1.91 1.25 SUBAREA RUNOFF(CFS) = 3.07 2.26 AREA-AVERAGED Fm(INCH/HR) = 0.30 = 0.33 AREA-AVERAGED Ap = 0.91 2.3 PEAK FLOW RATE(CFS) = 5.58 LOW HYDRAULICS: DW VELOCITY(FEET/SEC.) = 2.46 DE 10.00 TO NODE 12.00 = 573.00 FEET. 12.00 TO NODE 13.00 IS CODE = 51
	CHANNEL FLOW<<<<< REA (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM CHANNEL LENGTH THRU SUBAF CHANNEL BASE(FEET) = 10 MANNING'S FACTOR = 0.030 * 10 YEAR RAINFALL INTEN SUBAREA LOSS RATE DATA(AM DEVELOPMENT TYPE/ S	<pre>(FEET) = 848.00 DOWNSTREAM(FEET) = 841.00 REA(FEET) = 323.00 CHANNEL SLOPE = 0.0217 0.00 "Z" FACTOR = 4.000 MAXIMUM DEPTH(FEET) = 5.00 NSITY(INCH/HR) = 2.719 AC II):</pre>

"OPEN BRUSH" B 2.14 0.30 1.000 66 COMMERCIAL A 0.11 0.40 0.100 32 COMMERCIAL В 0.64 0.30 0.100 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.33 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.827 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.88 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.00 AVERAGE FLOW DEPTH (FEET) = 0.29 TRAVEL TIME (MIN.) = 1.80 Tc(MIN.) = 10.06SUBAREA AREA(ACRES) = 3.90 SUBAREA RUNOFF(CFS) = 8.58 EFFECTIVE AREA(ACRES) = 6.16 AREA-AVERAGED Fm(INCH/HR) = 0.28 AREA-AVERAGED Fp(INCH/HR) = 0.33 AREA-AVERAGED Ap = 0.86TOTAL AREA(ACRES) = 6.2 PEAK FLOW RATE(CFS) = 13.50 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.35 FLOW VELOCITY(FEET/SEC.) = 3.34 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 896.00 FEET. FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< _____ MAINLINE TC(MIN.) = 10.06 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.719 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER A 0.10 "OPEN BRUSH" 0.40 1.000 46 NATURAL FAIR COVER "OPEN BRUSH" в 0.94 0.30 1.000 66 RESIDENTIAL "8-10 DWELLINGS/ACRE" B 0.45 0.30 0.400 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.31 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.819SUBAREA AREA (ACRES) = 1.49 SUBAREA RUNOFF (CFS) = 3.31 EFFECTIVE AREA (ACRES) = 7.65 AREA-AVERAGED Fm (INCH/HR) = 0.28 AREA-AVERAGED $F_{p}(INCH/HR) = 0.33$ AREA-AVERAGED Ap = 0.85 TOTAL AREA(ACRES) = 7.6 PEAK FLOW RATE(CFS) = 16.81 FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.06 RAINFALL INTENSITY (INCH/HR) = 2.72 AREA-AVERAGED Fm (INCH/HR) = 0.28AREA-AVERAGED Fp(INCH/HR) = 0.33AREA-AVERAGED Ap = 0.85 EFFECTIVE STREAM AREA (ACRES) = 7.65 TOTAL STREAM AREA(ACRES) = 7.65 PEAK FLOW RATE (CFS) AT CONFLUENCE = 16.81

NUMBER	(CFS) (MI	Cc Intensity IN.) (INCH/HR)	(INCH/HR)	- (ACR	HEADWATER ES) NODE 15.4 1.00 7.6 10.00
		D TIME OF CONC ED FOR 2 STRE		FIO	
STREAM NUMBER	OW RATE TABJ Q (CFS) (M 33.12 10 31.27 20	Cc Intensity IN.) (INCH/HR)	Fp(Fm) (INCH/HR) 0.32(0.29) 0.32(0.29)	Ap Ae (ACR 0.89 0.91	HEADWATER ES) NODE 15.1 10.00 23.1 1.00
PEAK FLOW D EFFECTIVE 2 AREA-AVERA TOTAL AREA LONGEST FLO	RATE(CFS) = AREA(ACRES) GED Fp(INCH, (ACRES) = DWPATH FROM	NODE 1.0	Tc(MIN.) = AREA-AVERA AREA-AVERAGE 0 TO NODE	GED Fm(INCH D Ap = 0.8 6.00 =	9 1586.00 FEET.
START AREA	В				+
NEW SUBARE					
>>>>RATIO	NAL METHOD : OF-CONCENTI	E 20.00 TC INITIAL SUBARE RATION NOMOGRA	A ANALYSIS<< PH FOR INITI	<<< AL SUBAREA<	
INITIAL SU	BAREA FLOW-1	LENGTH (FEET) =	146.00		T) = 842.10
SUBAREA ANA * 10 YEAR SUBAREA TC DEVELOPMEN	ALYSIS USED RAINFALL IN AND LOSS RA NT TYPE/	D)/(ELEVATION MINIMUM Tc(MI NTENSITY(INCH/ ATE DATA(AMC SCS SOIL	N.) = 6.0 HR) = 3.653 II): AREA Fp	12 Ap	SCS Tc
LAND 1	JSE L	GROUP (A	CRES) (INCH	/HR) (DECI	MAL) CN (MIN.)
RESIDENTIA	TNCS / ACDE	В			00 56 6.01
"8-10 DWEL SUBAREA AVI SUBAREA AVI	ERAGE PERVI	DUS LOSS RATE, DUS AREA FRACI 3.21			
"8-10 DWEL SUBAREA AVI SUBAREA AVI SUBAREA RUI	ERAGE PERVIO ERAGE PERVIO NOFF(CFS) =	DUS AREA FRACI	TION, $Ap = 0$.400	3.21
"8-10 DWEL: SUBAREA AVI SUBAREA AVI SUBAREA RUI TOTAL AREA	ERAGE PERVI(ERAGE PERVI(NOFF(CFS) = (ACRES) =	DUS AREA FRACT 3.21 1.01 PEA	<pre>PION, Ap = 0 K FLOW RATE(************************************</pre>	.400 CFS) =	*****
"8-10 DWELL SUBAREA AVI SUBAREA AVI SUBAREA RUI TOTAL AREA FLOW PROCES >>>>>COMPU >>>>> (STRE)	ERAGE PERVIC ERAGE PERVIC NOFF(CFS) = (ACRES) = ************* SS FROM NODI TE STREET FI ET TABLE SEC	DUS AREA FRACT 3.21 1.01 PEA ************************************	<pre>ION, Ap = 0 K FLOW RATE(************** NODE 22 E THRU SUBAR D)<<<<<</pre>	.400 CFS) = ************ .00 IS CODE EA<<<<	*****

STREET HALFWIDTH (FEET) = 30.00DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.56 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.35HALFSTREET FLOOD WIDTH (FEET) = 10.74AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.68 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.95 STREET FLOW TRAVEL TIME (MIN.) = 1.61 Tc (MIN.) = 7.62 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 3.188 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "8-10 DWELLINGS/ACRE" B 2.42 0.30 0.400 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.400 SUBAREA AREA (ACRES) = 2.42 SUBAREA RUNOFF (CFS) = 6.68 EFFECTIVE AREA (ACRES) = 3.43 AREA-AVERAGED Fm (INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.40 TOTAL AREA(ACRES) = 3.4 PEAK FLOW RATE(CFS) = 9.47 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 12.62 FLOW VELOCITY (FEET/SEC.) = 2.93 DEPTH*VELOCITY (FT*FT/SEC.) = 1.14 LONGEST FLOWPATH FROM NODE 20.00 TO NODE 22.00 = 405.00 FEET. FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 62 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>> (STREET TABLE SECTION # 1 USED) <<<<< _____ UPSTREAM ELEVATION (FEET) = 838.46 DOWNSTREAM ELEVATION (FEET) = 832.28 STREET LENGTH (FEET) = 342.00 CURB HEIGHT (INCHES) = 8.0 STREET HALFWIDTH (FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.70 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.40

HALFSTREET FLOOD WIDTH (FEET) = 13.16AVERAGE FLOW VELOCITY (FEET/SEC.) = 3.36 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.34 STREET FLOW TRAVEL TIME (MIN.) = 1.70 Tc (MIN.) = 9.32 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.842 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fρ Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "8-10 DWELLINGS/ACRE" B 1.82 0.30 0.400 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.400 SUBAREA AREA(ACRES) = 1.82 SUBAREA RUNOFF(CFS) = 4.46 EFFECTIVE AREA(ACRES) = 5.25 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.40TOTAL AREA (ACRES) = 5.2 PEAK FLOW RATE (CFS) = 12.86 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 13.63 FLOW VELOCITY (FEET/SEC.) = 3.47 DEPTH*VELOCITY (FT*FT/SEC.) = 1.41 LONGEST FLOWPATH FROM NODE 20.00 TO NODE 23.00 = 747.00 FEET. | START AREA C | NEW SUBAREA RUN | JULY 2017 FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH (FEET) = 328.00 ELEVATION DATA: UPSTREAM(FEET) = 876.50 DOWNSTREAM(FEET) = 850.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.849 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.476 SUBAREA TC AND LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE NATURAL FAIR COVER в 0.80 0.30 1.000 66 11.85 "OPEN BRUSH" SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA RUNOFF(CFS) = 1.57TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = 1.57 FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 850.00 DOWNSTREAM(FEET) = 847.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 192.00 CHANNEL SLOPE = 0.0156

CHANNEL BASE (FEET) = 3.00 "Z" FACTOR = 2.000MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.330 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ар SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER в 1.05 0.30 1.000 "OPEN BRUSH" 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.53 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.41 AVERAGE FLOW DEPTH (FEET) = 0.29 TRAVEL TIME (MIN.) = 1.33 Tc(MIN.) = 13.18 SUBAREA AREA(ACRES) = 1.05 SUBAREA RUNOFF(CFS) = 1.92 EFFECTIVE AREA (ACRES) = 1.85 AREA-AVERAGED Fm (INCH/HR) = 0.30AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 1.8 PEAK FLOW RATE(CFS) = 3.38 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.35 FLOW VELOCITY(FEET/SEC.) = 2.64 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00 = 520.00 FEET. _____ END OF STUDY SUMMARY: TOTAL AREA (ACRES) = 1.8 TC (MIN.) = 13.18 EFFECTIVE AREA(ACRES) = 1.85 AREA-AVERAGED Fm(INCH/HR) = 0.30 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 1.000 PEAK FLOW RATE (CFS) = 3.38_____

```
END OF RATIONAL METHOD ANALYSIS
```

**************************************	SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.417 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.759 SUBAREA TC AND LOSS RATE DATA(AMC II):
(Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2014 Advanced Engineering Software (aes)	DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
Ver. 21.0 Release Date: 06/01/2014 License ID 1419	NATURAL FAIR COVER "OPEN BRUSH" B 0.78 0.30 1.000 66 13.42
Analysis prepared by:	NATURAL FAIR COVER "OPEN BRUSH" C 0.44 0.25 1.000 77 13.42
	SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.28SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000SUBAREA RUNOFF(CFS) = 2.72TOTAL AREA(ACRES) = 1.22PEAK FLOW RATE(CFS) = 2.72
**************************** DESCRIPTION OF STUDY ******************************	******
* OAK GROVE HYDROLOGY * * 25-YEAR STORM EVENT - PROPOSED CONDITIONS *	FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 51
* JULY 2017 *	>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
FILE NAME: OAK25.DAT TIME/DATE OF STUDY: 20:26 07/26/2017	ELEVATION DATA: UPSTREAM(FEET) = 861.50 DOWNSTREAM(FEET) = 859.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 369.00 CHANNEL SLOPE = 0.0068 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 4.000
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:	MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.419
TIME-OF-CONCENTRATION MODEL USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00	SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *DATA BANK RAINFALL USED*	"OPEN BRUSH" A 0.03 0.40 1.000 46 NATURAL FAIR COVER
ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD	"OPEN BRUSH" B 2.06 0.30 1.000 66 NATURAL FAIR COVER
USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR	"OPEN BRUSH" C 1.41 0.25 1.000 77 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.28 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (T) (n)	TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.10 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.75
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150	AVERAGE FLOW DEPTH(FEET) = 0.31 TRAVEL TIME(MIN.) = 3.51 Tc(MIN.) = 16.93
<pre>GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 1.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN</pre>	SUBAREA AREA (ACRES) =3.50SUBAREA RUNOFF (CFS) =6.73EFFECTIVE AREA (ACRES) =4.72AREA-AVERAGED Fm (INCH/HR) =0.28AREA-AVERAGED Fp (INCH/HR) =0.28AREA-AVERAGED Ap =1.00TOTAL AREA (ACRES) =4.7PEAK FLOW RATE (CFS) =9.08
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED	END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.39 FLOW VELOCITY(FEET/SEC.) = 2.00 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 699.00 FEET.
**************************************	*****
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<	FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 51
INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00	>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
ELEVATION DATA: UPSTREAM(FEET) = 876.00 DOWNSTREAM(FEET) = 861.50 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20	ELEVATION DATA: UPSTREAM(FEET) = 859.00 DOWNSTREAM(FEET) = 844.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 520.00 CHANNEL SLOPE = 0.0288 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 4.000
- 1 -	- 2 -

MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 2.251 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOTE AREA Fp Aр SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER 0.40 1.000 "OPEN BRUSH" А 3.16 46 NATURAL FAIR COVER "OPEN BRUSH" В 1.28 0.30 1.000 66 NATURAL FAIR COVER С 1.12 0.25 1.000 77 "OPEN BRUSH" COMMERCIAL 0.23 0.40 0.100 32 А 56 COMMERCIAL В 0.14 0.30 0.100 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.35 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.944TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.22 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.77 AVERAGE FLOW DEPTH(FEET) = 0.33 TRAVEL TIME(MIN.) = 2.30 Tc(MIN.) = 19.23SUBAREA AREA(ACRES) = 5.93 SUBAREA RUNOFF (CFS) = 10.26EFFECTIVE AREA(ACRES) = 10.65 AREA-AVERAGED Fm(INCH/HR) = 0.31 AREA-AVERAGED Fp (INCH/HR) = 0.32 AREA-AVERAGED Ap = 0.97TOTAL AREA(ACRES) = 10.6 PEAK FLOW RATE(CFS) = 18.63 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.39 FLOW VELOCITY(FEET/SEC.) = 4.11 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 1219.00 FEET. FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 844.00 DOWNSTREAM(FEET) = 838.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 225.00 CHANNEL SLOPE = 0.0267 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 4.000MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 2.195 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fρ qА SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL FAIR COVER "OPEN BRUSH" А 0.51 0.40 1.000 46 NATURAL FAIR COVER "OPEN BRUSH" В 3.42 0.30 1.000 66 NATURAL FAIR COVER "OPEN BRUSH" С 0.13 0.25 1.000 77 32 COMMERCIAL А 0.37 0.40 0.100 0.100 56 COMMERCIAL В 0.36 0.30 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.31 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.863 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 22.78 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.32 AVERAGE FLOW DEPTH(FEET) = 0.45 TRAVEL TIME(MIN.) = 0.87 Tc(MIN.) = 20.10SUBAREA AREA(ACRES) = 4.79 SUBAREA RUNOFF (CFS) = 8.30 EFFECTIVE AREA(ACRES) = 15.44 AREA-AVERAGED Fm(INCH/HR) = 0.30 NATURAL FAIR COVER

AREA-AVERAGED Fp (INCH/HR) = 0.32 AREA-AVERAGED Ap = 0.94TOTAL AREA (ACRES) = 15.4 PEAK FLOW RATE(CFS) = 26.40 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.49 FLOW VELOCITY(FEET/SEC.) = 4.49 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 1444.00 FEET. ***** 5.00 TO NODE FLOW PROCESS FROM NODE 6.00 IS CODE = 31>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 838.00 DOWNSTREAM(FEET) = 836.00 FLOW LENGTH (FEET) = 142.00 MANNING'S N = 0.013DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.2 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 9.85 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 26.40PIPE TRAVEL TIME (MIN.) = 0.24 Tc (MIN.) = 20.34LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 1586.00 FEET. ******* FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 1_____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 20.34RAINFALL INTENSITY (INCH/HR) = 2.18 AREA-AVERAGED Fm (INCH/HR) = 0.30AREA-AVERAGED Fp(INCH/HR) = 0.32AREA-AVERAGED Ap = 0.94EFFECTIVE STREAM AREA (ACRES) = 15.44 TOTAL STREAM AREA(ACRES) = 15.44 PEAK FLOW RATE(CFS) AT CONFLUENCE = 26.40 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 307.00 ELEVATION DATA: UPSTREAM(FEET) = 861.20 DOWNSTREAM(FEET) = 854.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.363 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 4.208 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fρ qΑ SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER "OPEN BRUSH" А 0.07 0.40 1.000 46 14.78 NATURAL FAIR COVER "OPEN BRUSH" В 0.82 0.30 1.000 66 14.78

"OPEN BRUSH"	ת 0.03 0.20 1.000 83 14 78
COMMERCIAL	D 0.03 0.20 1.000 83 14.78 B 0.09 0.30 0.100 56 6.36
	JS LOSS RATE, Fp(INCH/HR) = 0.30
	JS AREA FRACTION, Ap = 0.920
SUBAREA RUNOFF(CFS) =	3.57 1.01 PEAK FLOW RATE(CFS) = 3.57
TOTAL AREA(ACRES) =	1.01 PEAK FLOW RATE (CFS) = 3.57
	11.00 TO NODE 12.00 IS CODE = 51
	JBAREA (EXISTING ELEMENT) <<<<<
	AM(FEET) = 854.00 DOWNSTREAM(FEET) = 848.00
	BAREA(FEET) = 266.00 CHANNEL SLOPE = 0.0226
	10.00 "Z" FACTOR = 4.000
	80 MAXIMUM DEPTH(FEET) = 5.00
	TENSITY(INCH/HR) = 3.659
SUBAREA LOSS RATE DATA (
DEVELOPMENT TYPE/	SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
LAND USE NATURAL FAIR COVER	GROUP (ACKES) (INCH/HK) (DECIMAL) CN
"OPEN BRUSH"	A 0.60 0.40 1.000 46
NATURAL FAIR COVER	
"OPEN BRUSH"	B 0.51 0.30 1.000 66
COMMERCIAL	B 0.14 0.30 0.100 56
SUBAREA AVERAGE PERVIOU	JS LOSS RATE, Fp(INCH/HR) = 0.35
	JS AREA FRACTION, Ap = 0.899
	SING ESTIMATED FLOW(CFS) = 5.45
	EA BASED ON VELOCITY (FEET/SEC.) = 2.48
Tc(MIN.) = 8.15	T) = 0.20 TRAVEL TIME(MIN.) = 1.79
	1.25 SUBAREA RUNOFE (CES) = 3.76
EFFECTIVE AREA (ACRES) =	1.25 SUBAREA RUNOFF (CFS) = 3.76 = 2.26 AREA-AVERAGED Fm (INCH/HR) = 0.30
	R = 0.33 AREA-AVERAGED Ap = 0.91
TOTAL AREA(ACRES) =	2.3 PEAK FLOW RATE(CFS) = 6.83
END OF SUBAREA CHANNEL $(EFET) = 0.23$ F	FLOW HYDRAULICS: FLOW VELOCITY(FEET/SEC.) = 2.67
	NODE 10.00 TO NODE $12.00 = 573.00$ FEET.
DOMODOL LIDOMININ LIVON N	
* * * * * * * * * * * * * * * * * * * *	******************
	12.00 TO NODE 13.00 IS CODE = 51
	12.00 TO NODE 13.00 IS CODE = 51
FLOW PROCESS FROM NODE	12.00 TO NODE 13.00 IS CODE = 51
FLOW PROCESS FROM NODE >>>>COMPUTE TRAPEZOIDA >>>>TRAVELTIME THRU SU	12.00 TO NODE 13.00 IS CODE = 51 AL CHANNEL FLOW<<<< JBAREA (EXISTING ELEMENT)<<<<<
FLOW PROCESS FROM NODE >>>>COMPUTE TRAPEZOIDA >>>>TRAVELTIME THRU SU ELEVATION DATA: UPSTREAL	12.00 TO NODE 13.00 IS CODE = 51 AL CHANNEL FLOW<<<< JBAREA (EXISTING ELEMENT)<<<<< AM (FEET) = 848.00 DOWNSTREAM (FEET) = 841.00
FLOW PROCESS FROM NODE >>>>COMPUTE TRAPEZOIDA >>>>TRAVELTIME THRU SU ELEVATION DATA: UPSTREAL CHANNEL LENGTH THRU SUB.	12.00 TO NODE 13.00 IS CODE = 51 AL CHANNEL FLOW<<<< JBAREA (EXISTING ELEMENT)<<<<< AM(FEET) = 848.00 DOWNSTREAM(FEET) = 841.00 BAREA (FEET) = 323.00 CHANNEL SLOPE = 0.0217
FLOW PROCESS FROM NODE >>>>COMPUTE TRAPEZOIDA >>>>TRAVELTIME THRU SU ELEVATION DATA: UPSTREAL CHANNEL LENGTH THRU SUB. CHANNEL BASE (FEET) =	12.00 TO NODE 13.00 IS CODE = 51 AL CHANNEL FLOW<<<< JBAREA (EXISTING ELEMENT)<<<<< AM(FEET) = 848.00 DOWNSTREAM(FEET) = 841.00 BAREA(FEET) = 323.00 CHANNEL SLOPE = 0.0217 10.00 "Z" FACTOR = 4.000
FLOW PROCESS FROM NODE >>>>COMPUTE TRAPEZOIDA >>>>TRAVELTIME THRU SU ELEVATION DATA: UPSTREAL CHANNEL LENGTH THRU SUB CHANNEL BASE (FEET) = MANNING'S FACTOR = 0.03	12.00 TO NODE 13.00 IS CODE = 51 AL CHANNEL FLOW<<<< JBAREA (EXISTING ELEMENT)<<<<< AM(FEET) = 848.00 DOWNSTREAM(FEET) = 841.00 BAREA (FEET) = 323.00 CHANNEL SLOPE = 0.0217
FLOW PROCESS FROM NODE >>>>COMPUTE TRAPEZOIDA >>>>TRAVELTIME THRU SU ELEVATION DATA: UPSTREAL CHANNEL LENGTH THRU SUB CHANNEL BASE (FEET) = MANNING'S FACTOR = 0.03 * 25 YEAR RAINFALL INT	12.00 TO NODE 13.00 IS CODE = 51 AL CHANNEL FLOW<<<< JBAREA (EXISTING ELEMENT)<<<<< AM (FEET) = 848.00 DOWNSTREAM (FEET) = 841.00 BAREA (FEET) = 323.00 CHANNEL SLOPE = 0.0217 10.00 "Z" FACTOR = 4.000 30 MAXIMUM DEPTH (FEET) = 5.00 PENSITY (INCH/HR) = 3.294
FLOW PROCESS FROM NODE >>>>COMPUTE TRAPEZOIDA >>>>TRAVELTIME THRU SU ELEVATION DATA: UPSTREAL CHANNEL LENGTH THRU SUB CHANNEL BASE (FEET) = MANNING'S FACTOR = 0.03	12.00 TO NODE 13.00 IS CODE = 51 AL CHANNEL FLOW<<<< UBAREA (EXISTING ELEMENT)<<<<< AM(FEET) = 848.00 DOWNSTREAM(FEET) = 841.00 BAREA(FEET) = 323.00 CHANNEL SLOPE = 0.0217 10.00 "Z" FACTOR = 4.000 30 MAXIMUM DEPTH(FEET) = 5.00 PENSITY(INCH/HR) = 3.294 (AMC II):
FLOW PROCESS FROM NODE >>>>COMPUTE TRAPEZOIDA >>>>TRAVELTIME THRU SU ELEVATION DATA: UPSTREAL CHANNEL LENGTH THRU SUB. CHANNEL BASE (FEET) = MANNING'S FACTOR = 0.03 * 25 YEAR RAINFALL INT SUBAREA LOSS RATE DATA (, DEVELOPMENT TYPE/	12.00 TO NODE 13.00 IS CODE = 51 AL CHANNEL FLOW<<<< UBAREA (EXISTING ELEMENT)<<<<< AM(FEET) = 848.00 DOWNSTREAM(FEET) = 841.00 BAREA(FEET) = 323.00 CHANNEL SLOPE = 0.0217 10.00 "Z" FACTOR = 4.000 30 MAXIMUM DEPTH(FEET) = 5.00 PENSITY(INCH/HR) = 3.294 (AMC II):
FLOW PROCESS FROM NODE >>>>COMPUTE TRAPEZOIDA >>>>TRAVELTIME THRU SU ELEVATION DATA: UPSTREAL CHANNEL LENGTH THRU SUB CHANNEL BASE (FEET) = MANNING'S FACTOR = 0.03 * 25 YEAR RAINFALL INT SUBAREA LOSS RATE DATA (DEVELOPMENT TYPE/ LAND USE NATURAL FAIR COVER	12.00 TO NODE 13.00 IS CODE = 51 AL CHANNEL FLOW<<<< JBAREA (EXISTING ELEMENT) <br AM(FEET) = 848.00 DOWNSTREAM(FEET) = 841.00 AAREA(FEET) = 323.00 CHANNEL SLOPE = 0.0217 10.00 "Z" FACTOR = 4.000 30 MAXIMUM DEPTH(FEET) = 5.00 TENSITY(INCH/HR) = 3.294 (AMC II): SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
FLOW PROCESS FROM NODE >>>>COMPUTE TRAPEZOIDA >>>>TRAVELTIME THRU SU ELEVATION DATA: UPSTREAL CHANNEL LENGTH THRU SUB. CHANNEL BASE (FEET) = MANNING'S FACTOR = 0.03 * 25 YEAR RAINFALL INT SUBAREA LOSS RATE DATA (, DEVELOPMENT TYPE/ LAND USE	12.00 TO NODE 13.00 IS CODE = 51 AL CHANNEL FLOW<<<< JBAREA (EXISTING ELEMENT)<<<<< AM(FEET) = 848.00 DOWNSTREAM(FEET) = 841.00 BAREA(FEET) = 323.00 CHANNEL SLOPE = 0.0217 10.00 "Z" FACTOR = 4.000 30 MAXIMUM DEPTH(FEET) = 5.00 TENSITY(INCH/HR) = 3.294 (AMC II): SCS SOIL AREA FP AP SCS

"OPEN BRUSH" B 2.14 0.30 1.000 66 COMMERCIAL A 0.11 0.40 0.100 32 COMMERCIAL В 0.64 0.30 0.100 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.33 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.827 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.14 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.24 AVERAGE FLOW DEPTH (FEET) = 0.33 TRAVEL TIME (MIN.) = 1.66 Tc(MIN.) = 9.81 SUBAREA AREA(ACRES) = 3.90 SUBAREA RUNOFF(CFS) = 10.60EFFECTIVE AREA(ACRES) = 6.16 AREA-AVERAGED Fm(INCH/HR) = 0.28 AREA-AVERAGED Fp(INCH/HR) = 0.33 AREA-AVERAGED Ap = 0.86TOTAL AREA(ACRES) = 6.2 PEAK FLOW RATE(CFS) = 16.69 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.40 FLOW VELOCITY(FEET/SEC.) = 3.60 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 896.00 FEET. FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< _____ MAINLINE Tc(MIN.) = 9.81 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 3.294 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER A 0.10 "OPEN BRUSH" 0.40 1.000 46 NATURAL FAIR COVER "OPEN BRUSH" в 0.94 0.30 1.000 66 RESIDENTIAL "8-10 DWELLINGS/ACRE" B 0.45 0.30 0.400 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.31 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.819SUBAREA AREA (ACRES) = 1.49 SUBAREA RUNOFF (CFS) = 4.08 EFFECTIVE AREA (ACRES) = 7.65 AREA-AVERAGED Fm (INCH/HR) = 0.28 AREA-AVERAGED $F_{p}(INCH/HR) = 0.33$ AREA-AVERAGED Ap = 0.85 TOTAL AREA(ACRES) = 7.6 PEAK FLOW RATE(CFS) = 20 77 FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 9.81 RAINFALL INTENSITY (INCH/HR) = 3.29 AREA-AVERAGED Fm (INCH/HR) = 0.28AREA-AVERAGED Fp(INCH/HR) = 0.33AREA-AVERAGED Ap = 0.85 EFFECTIVE STREAM AREA (ACRES) = 7.65 TOTAL STREAM AREA(ACRES) = 7.65 PEAK FLOW RATE (CFS) AT CONFLUENCE = 20.77

1	(CFS) 26.40	(MIN.) 20.34	(INCH/HR) 2.180	Fp(Fm) (INCH/HR) 0.32(0.30) 0.33(0.28)	0.94	(ACRES) 15.4	NODE 1.00
RAINFALL IN CONFLUENCE				ENTRATION RA AMS.	TIO		
** PEAK FL(STREAM NUMBER 1 2				Fp(Fm) (INCH/HR) 0.32(0.29) 0.32(0.29)	Ap 0.89 0.91	Ae (ACRES) 15.1 23.1	HEADWATER NODE 10.00 1.00
PEAK FLOW H EFFECTIVE A AREA-AVERAC TOTAL AREA LONGEST FLO	RATE(CFS) AREA(ACRE GED Fp(IN (ACRES) = OWPATH FF	= ES) = NCH/HR) = ROM NODI	41.03 15.10 = 0.32 23.1 = 1.0	S FOLLOWS: Tc(MIN.) = AREA-AVERA AREA-AVERAGE 0 TO NODE	GED Fm D Ap = 6.0	(INCH/HR) 0.89 0 = 15	86.00 FEET.
START AREA	В						+
NEW SUBARE	A RUN						
							+
*******	* * * * * * * * *	******	******	******	*****	******	* * * * * * * * * * * *
			20.00 TO	NODE 21	00 TS	CODE =	01
				A ANALYSIS<<			
>>>>RATION	NAL METHO	DD INIT:	IAL SUBARE				
>>>>RATION >>USE TIME- =======	NAL METHO -OF-CONCE	DD INIT: ENTRATIO	IAL SUBARE DN NOMOGRA	A ANALYSIS<< PH FOR INITI			
>>>>RATION >>USE TIME- ====================================	NAL METHO -OF-CONCE ====== BAREA FLO	DD INIT: ENTRATIO	IAL SUBARE DN NOMOGRA ====================================	A ANALYSIS<< PH FOR INITI	 AL SUBJ	AREA<<	
>>>>RATION >>USE TIME- INITIAL SUP ELEVATION I	NAL METHO -OF-CONCE BAREA FLO DATA: UPS	DD INIT: ENTRATIO ======= DW-LENG STREAM(1	IAL SUBARE DN NOMOGRA ========== FH(FEET) = FEET) =	A ANALYSIS<< PH FOR INITI 146.00 845.00 DOW	AL SUBA	AREA<<	
>>>>RATIO >>USE TIME- ====================================	NAL METHO -OF-CONCE BAREA FLO DATA: UPS ENGTH** 3	DD INIT: ENTRATIC STREAM(1 STREAM(1 3.00)/(1	IAL SUBARE DN NOMOGRA ======== FH(FEET) = FEET) = ELEVATION	A ANALYSIS<< PH FOR INITI ==================================	 AL SUB 	AREA<<	
>>>>RATION >>USE TIME INITIAL SUH ELEVATION I TC = K*[(LH SUBAREA ANA * 25 YEAR	NAL METHO -OF-CONCE BAREA FLO DATA: UPS ENGTH** 3 ALYSIS US RAINFALI	DD INIT ENTRATIO DW-LENG' STREAM(1 3.00)/(1 SED MIN SED MIN S INTEN	IAL SUBARE DN NOMOGRA ======= FH(FEET) = FEET) = SLEVATION IMUM Tc(MI SITY(INCH/	A ANALYSIS<< PH FOR INITI 146.00 845.00 DOW CHANGE)]**0. N.) = 6.0 HR) = 4.346	AL SUBA	AREA<<	
>>>>RATION >>USE TIME ====================================	NAL METHO -OF-CONCE BAREA FLC DATA: UPS ENGTH** 3 ALYSIS US RAINFALI AND LOSS	DD INIT: ENTRATIO DW-LENG STREAM(1 3.00)/(1 SED MIN L INTENS S RATE 1	IAL SUBARE DN NOMOGRA FH(FEET) = FEET) = ELEVATION IMUM TC(MI SITY(INCH/ DATA(AMC	A ANALYSIS<< PH FOR INITI 146.00 845.00 DOW CHANGE)]**0. N.) = 6.0 HR) = 4.346 II):	AL SUB/ AL SUB/ NSTREAN 20 12	AREA<<	842.10
>>>>RATION >>USE TIME INITIAL SUH ELEVATION I TC = K*[(LH SUBAREA ANN * 25 YEAR SUBAREA TC DEVELOPMEN	NAL METHO -OF-CONCE BAREA FLO DATA: UPS ENGTH** 3 ALYSIS US RAINFALI AND LOSS NT TYPE/	DD INIT: ENTRATIO DW-LENG' STREAM(1 3.00)/(1 5ED MIN: L INTEN: 5 RATE 1 S(IAL SUBARE DN NOMOGRA H(FEET) = FEET) = ELEVATION IMUM TC(MI SITY(INCH/ DATA(AMC CS SOIL	A ANALYSIS<< PH FOR INITI 146.00 845.00 DOW CHANGE)]**0. N.) = 6.00 HR) = 4.346 II): AREA FP	<<< AL SUBJ INSTREAL 20 12	AREA<< 	842.10
>>>>RATION >>USE TIME ====================================	NAL METHO -OF-CONCE BAREA FLC DATA: UPS ENGTH** 3 ALYSIS US RAINFALI AND LOSS NT TYPE/ JSE L	DD INIT: ENTRATIO DW-LENG DW-LENG STREAM (1 3.00) / (1 SED MIN S CONTRACTOR S RATE 1 S (C (IAL SUBARE DN NOMOGRA TH (FEET) = FEET) = ELEVATION IMUM TC (MI SITY (INCH/ DATA (AMC CS SOIL GROUP (A	A ANALYSIS<< PH FOR INITI 146.00 845.00 DOW CHANGE)]**0. N.) = 6.0 HR) = 4.346 II): AREA FP CRES) (INCH	AL SUBA AL SUBA INSTREAL 20 12 //HR)	AREA<< M(FEET) = Ap (DECIMAL)	842.10 SCS Tc CN (MIN.)
>>>>RATION >>USE TIME ============ INITIAL SUF ELEVATION I TC = K*[(LF SUBAREA ANA * 25 YEAR SUBAREA ANA LAND U RESIDENTIAN "8-10 DWELN SUBAREA ANA	NAL METHO -OF-CONCE BAREA FLC DATA: UPS ENGTH** 3 ALYSIS US RAINFALI AND LOSS NT TYPE/ JSE L LINGS/ACF ERAGE PEF ERAGE PEF	DD INIT: ENTRATIO DW-LENG STREAM (1 3.00) /	IAL SUBARE DN NOMOGRA 	A ANALYSIS<< PH FOR INITI 146.00 845.00 DOW CHANGE)]**0. N.) = 6.0 HR) = 4.346 II): AREA FP CRES) (INCH	<pre></pre>	AREA<< M(FEET) = (DECIMAL) 0.400 30	842.10 SCS Tc
>>>>RATION >>USE TIME ====================================	NAL METHO -OF-CONCE BAREA FLC DATA: UPS ENGTH** 3 ALYSIS US RAINFALI AND LOSS NT TYPE/ JSE L LINGS/ACF ERAGE PEF ERAGE PEF NOFF(CFS)	DD INIT: ENTRATIO SETREAM (1 3.00) / (1 3.0)	IAL SUBARE DN NOMOGRA 	A ANALYSIS<< PH FOR INITI 146.00 845.00 DOW CHANGE)]**0. N.) = 6.0 HR) = 4.346 II): AREA FP CRES) (INCH 1.01 0 Fp(INCH/HR)	<pre></pre>	AREA<< M(FEET) = (DECIMAL) 0.400 30	842.10 SCS Tc CN (MIN.) 56 6.01
>>>>RATION >>USE TIME- ====================================	NAL METHO -OF-CONCE ========== BAREA FLC DATA: UPS ENGTH** 3 ALYSIS US RAINFALI AND LOSS NT TYPE/ JSE L LINGS/ACF ERAGE PEE ERAGE PEE NOFF (CFS) (ACRES) =	DD INIT: ENTRATIO SETREAM (1 SED MIN: GED MIN: GED MIN: GED MIN: GED MIN: SED MIN: SED MIN: SED MIN: SEC MIN: S	IAL SUBARE DN NOMOGRA FEET) = FEET) = ELEVATION IMUM Tc(MI SITY(INCH/ DATA (AMC CS SOIL GROUP (A B LOSS RATE, AREA FRACT 3.84 1.01 PEA	A ANALYSIS<< PH FOR INITI 146.00 845.00 DOW CHANGE)]**0. N.) = 6.0 HR) = 4.346 II): AREA FP CRES) (INCH 1.01 0 FP(INCH/HR) ION, AP = 0 K FLOW RATE(<pre></pre>	AREA<< M(FEET) = Ap (DECIMAL) 0.400 30 3.8	842.10 SCS Tc CN (MIN.) 56 6.01
>>>>RATION >>USE TIME ====================================	NAL METHO -OF-CONCE BAREA FLC DATA: UPS ENGTH** 3 ALYSIS US RAINFALI AND LOSS NT TYPE/ USE L LINGS/ACE ERAGE PEE ERAGE PEF NOFF(CFS) (ACRES) =	DD INIT: ENTRATIO SELENG' STREAM (1 3.00) / (1 SED MIN: SED MIN: SEL MIN: S	IAL SUBARE DN NOMOGRA FEET) = FEET) = ELEVATION IMUM Tc(MI SITY(INCH/ DATA (AMC CS SOIL GROUP (A B LOSS RATE, AREA FRACT 3.84 1.01 PEA	A ANALYSIS<< PH FOR INITI 146.00 845.00 DOW CHANGE)]**0. N.) = 6.0 HR) = 4.346 II): AREA FP CRES) (INCH 1.01 0 FP(INCH/HR) ION, AP = 0 K FLOW RATE(**********	<pre></pre>	AREA<< M(FEET) = Ap (DECIMAL) 0.400 30 3.8	842.10 SCS Tc CN (MIN.) 56 6.01 4

STREET HALFWIDTH (FEET) = 30.00DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.88 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.37HALFSTREET FLOOD WIDTH (FEET) = 11.68 AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.79 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.04 STREET FLOW TRAVEL TIME (MIN.) = 1.55 Tc (MIN.) = 7.56 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.818 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ар SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "8-10 DWELLINGS/ACRE" B 2.42 0.30 0.400 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.400 SUBAREA AREA (ACRES) = 2.42 SUBAREA RUNOFF (CFS) = 8.05 EFFECTIVE AREA (ACRES) = 3.43 AREA-AVERAGED Fm (INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.40 TOTAL AREA(ACRES) = 3.4 PEAK FLOW RATE(CFS) = 11.41 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 13.71 FLOW VELOCITY (FEET/SEC.) = 3.05 DEPTH*VELOCITY (FT*FT/SEC.) = 1.24 LONGEST FLOWPATH FROM NODE 20.00 TO NODE 22.00 = 405.00 FEET. FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 62 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>> (STREET TABLE SECTION # 1 USED) <<<<< _____ UPSTREAM ELEVATION (FEET) = 838.46 DOWNSTREAM ELEVATION (FEET) = 832.28 STREET LENGTH (FEET) = 342.00 CURB HEIGHT (INCHES) = 8.0 STREET HALFWIDTH (FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.12 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.42

HALFSTREET FLOOD WIDTH (FEET) = 14.26AVERAGE FLOW VELOCITY (FEET/SEC.) = 3.51 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.47 STREET FLOW TRAVEL TIME (MIN.) = 1.62 Tc (MIN.) = 9.18 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 3.420 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp qА SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "8-10 DWELLINGS/ACRE" B 1.82 0.30 0.400 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.400 SUBAREA AREA(ACRES) = 1.82 SUBAREA RUNOFF(CFS) = 5.41 EFFECTIVE AREA(ACRES) = 5.25 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.40TOTAL AREA (ACRES) = 5.2 PEAK FLOW RATE (CFS) = 15.59 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) = 14.80 FLOW VELOCITY (FEET/SEC.) = 3.62 DEPTH*VELOCITY (FT*FT/SEC.) = 1.55 LONGEST FLOWPATH FROM NODE 20.00 TO NODE 23.00 = 747.00 FEET. ·-----| START AREA C | NEW SUBAREA RUN | JULY 2017 FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH (FEET) = 328.00 ELEVATION DATA: UPSTREAM(FEET) = 876.50 DOWNSTREAM(FEET) = 850.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.849 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.960 SUBAREA TC AND LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE NATURAL FAIR COVER 0.80 0.30 1.000 66 11.85 "OPEN BRUSH" В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA RUNOFF(CFS) = 1.92TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = 1.92 FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 850.00 DOWNSTREAM(FEET) = 847.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 192.00 CHANNEL SLOPE = 0.0156

CHANNEL BASE (FEET) = 3.00 "Z" FACTOR = 2.000MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 2.796 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ар SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER в 1.05 0.30 1.000 "OPEN BRUSH" 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.10 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.55 AVERAGE FLOW DEPTH (FEET) = 0.33 TRAVEL TIME (MIN.) = 1.25 Tc(MIN.) = 13.10SUBAREA AREA(ACRES) = 1.05 SUBAREA RUNOFF(CFS) = 2.36 EFFECTIVE AREA (ACRES) = 1.85 AREA-AVERAGED Fm (INCH/HR) = 0.30AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 1.8 PEAK FLOW RATE(CFS) = 4.16 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.39 FLOW VELOCITY(FEET/SEC.) = 2.85 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00 = 520.00 FEET. _____ END OF STUDY SUMMARY: TOTAL AREA (ACRES) = 1.8 TC (MIN.) = 13.10 EFFECTIVE AREA(ACRES) = 1.85 AREA-AVERAGED Fm(INCH/HR) = 0.30 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 1.000 PEAK FLOW RATE (CFS) = 4.16_____ END OF RATIONAL METHOD ANALYSIS

- 10

<pre>************************************</pre>	SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.417* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.515SUBAREA TC AND LOSS RATE DATA(AMC III):DEVELOPMENT TYPE/SCS SOIL AREA Fp Ap SCS TCLAND USEGROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)NATURAL FAIR COVER"OPEN BRUSH"B0.780.301.0008413.42NATURAL FAIR COVER"OPEN BRUSH"C0.440.25SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.28SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000SUBAREA RUNOFF(CFS) = 3.55TOTAL AREA(ACRES) = 1.22PEAK FLOW RATE(CFS) = 3.55
**************************************	*****
* OAK GROVE HYDROLOGY * * 100-YEAR STORM EVENT - PROPOSED CONDITIONS *	FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 51
* JULY 2017 *	>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
************************	>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
FILE NAME: OAK100.DAT TIME/DATE OF STUDY: 20:21 07/26/2017	ELEVATION DATA: UPSTREAM(FEET) = 861.50 DOWNSTREAM(FEET) = 859.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 369.00 CHANNEL SLOPE = 0.0068 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 4.000
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:	MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.110
TIME-OF-CONCENTRATION MODEL	SUBAREA LOSS RATE DATA (AMC III):
USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *DATA BANK RAINFALL USED*	DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" A 0.03 0.40 1.000 66 NATURAL FAIR COVER
ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD	"OPEN BRUSH" B 2.06 0.30 1.000 84 NATURAL FAIR COVER
<pre>*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (T) (n) == ==== =============================</pre>	"OPEN BRUSH" C 1.41 0.25 1.000 92 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.28 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.01 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.93 AVERAGE FLOW DEPTH(FEET) = 0.36 TRAVEL TIME(MIN.) = 3.19 Tc(MIN.) = 16.61
<pre>GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 1.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED</pre>	SUBAREA AREA (ACRES) =3.50SUBAREA RUNOFF(CFS) =8.91EFFECTIVE AREA (ACRES) =4.72AREA-AVERAGED Fm (INCH/HR) =0.28AREA-AVERAGED Fp (INCH/HR) =0.28AREA-AVERAGED Ap =1.00TOTAL AREA (ACRES) =4.7PEAK FLOW RATE (CFS) =12.02END OF SUBAREA CHANNEL FLOW HYDRAULICS:DEPTH (FEET) =0.46FLOW VELOCITY (FEET/SEC.) =2.20
*******	LONGEST FLOWPATH FROM NODE 1.00 TO NODE $3.00 = 699.00$ FEET.
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21	**************************************
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<	FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 ELEVATION DATA: UPSTREAM(FEET) = 876.00 DOWNSTREAM(FEET) = 861.50	ELEVATION DATA: UPSTREAM(FEET) = 859.00 DOWNSTREAM(FEET) = 844.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 520.00 CHANNEL SLOPE = 0.0288
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20	CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 4.000
- 1 -	- 2 -

MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.906 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Aр SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER 1.000 "OPEN BRUSH" Α 3.16 0.40 66 NATURAL FAIR COVER "OPEN BRUSH" В 1.28 0.30 1.000 84 NATURAL FAIR COVER С 1.12 0.25 1.000 92 "OPEN BRUSH" COMMERCIAL 0.23 0.40 0.100 52 А COMMERCIAL В 0.14 0.30 0.100 76 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.35 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.944TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 18.90 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.15 AVERAGE FLOW DEPTH(FEET) = 0.39 TRAVEL TIME(MIN.) = 2.09 Tc(MIN.) = 18.70SUBAREA AREA(ACRES) = 5.93 SUBAREA RUNOFF (CFS) = 13.76EFFECTIVE AREA(ACRES) = 10.65 AREA-AVERAGED Fm(INCH/HR) = 0.31 AREA-AVERAGED Fp (INCH/HR) = 0.32 AREA-AVERAGED Ap = 0.97TOTAL AREA(ACRES) = 10.6 PEAK FLOW RATE(CFS) = 24.91 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.46 FLOW VELOCITY(FEET/SEC.) = 4.54 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 1219.00 FEET. FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 844.00 DOWNSTREAM(FEET) = 838.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 225.00 CHANNEL SLOPE = 0.0267 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 4.000MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 100 YEAR RAINFALL INTENSITY (INCH/HR) = 2.837 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fρ qА SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL FAIR COVER "OPEN BRUSH" А 0.51 0.40 1.000 66 NATURAL FAIR COVER "OPEN BRUSH" В 3.42 0.30 1.000 84 NATURAL FAIR COVER "OPEN BRUSH" С 0.13 0.25 1.000 92 52 COMMERCIAL А 0.37 0.40 0.100 76 COMMERCIAL В 0.36 0.30 0.100 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.31 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.863 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 30.44 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.73 AVERAGE FLOW DEPTH(FEET) = 0.53 TRAVEL TIME(MIN.) = 0.79 Tc(MIN.) = 19.49SUBAREA AREA(ACRES) = 4.79 SUBAREA RUNOFF (CFS) = 11.07EFFECTIVE AREA(ACRES) = 15.44 AREA-AVERAGED Fm(INCH/HR) = 0.30 NATURAL FAIR COVER

AREA-AVERAGED Fp (INCH/HR) = 0.32 AREA-AVERAGED Ap = 0.94TOTAL AREA (ACRES) = 15.4 PEAK FLOW RATE(CFS) = 35.32 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.58 FLOW VELOCITY(FEET/SEC.) = 4.97 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 1444.00 FEET. ***** 5.00 TO NODE FLOW PROCESS FROM NODE 6.00 IS CODE = 31>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 838.00 DOWNSTREAM(FEET) = 836.00 FLOW LENGTH (FEET) = 142.00 MANNING'S N = 0.013DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.8 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 10.27ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =35.32 PIPE TRAVEL TIME (MIN.) = 0.23 Tc (MIN.) = 19.73 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 1586.00 FEET. ******* FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 1_____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 19.73RAINFALL INTENSITY(INCH/HR) = 2.82 AREA-AVERAGED Fm (INCH/HR) = 0.30AREA-AVERAGED Fp(INCH/HR) = 0.32AREA-AVERAGED Ap = 0.94EFFECTIVE STREAM AREA (ACRES) = 15.44 TOTAL STREAM AREA(ACRES) = 15.44 PEAK FLOW RATE(CFS) AT CONFLUENCE = 35.32 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 307.00 ELEVATION DATA: UPSTREAM(FEET) = 861.20 DOWNSTREAM(FEET) = 854.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.363 * 100 YEAR RAINFALL INTENSITY (INCH/HR) = 5.389 SUBAREA TC AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fρ qΑ SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER "OPEN BRUSH" А 0.07 0.40 1.000 66 14.78 NATURAL FAIR COVER "OPEN BRUSH" В 0.82 0.30 1.000 84 14.78

SUBAREA AVERAGE PERVIOU SUBAREA AVERAGE PERVIOU SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = ************************************	D 0.03 0.20 1.000 96 14.78 B 0.09 0.30 0.100 76 6.36 CLOSS RATE, Fp(INCH/HR) = 0.30 CAREA FRACTION, Ap = 0.920 4.64 1.01 PEAK FLOW RATE(CFS) = 4.64
ELEVATION DATA: UPSTREA CHANNEL LENGTH THRU SUB CHANNEL BASE(FEET) = MANNING'S FACTOR = 0.03	1(FEET) = 854.00 DOWNSTREAM(FEET) = 848.00 AREA(FEET) = 266.00 CHANNEL SLOPE = 0.0226 .0.00 "Z" FACTOR = 4.000 MAXIMUM DEPTH(FEET) = 5.00 NSITY(INCH/HR) = 4.728
DEVELOPMENT TYPE/ LAND USE NATURAL FAIR COVER	SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
"OPEN BRUSH" NATURAL FAIR COVER	A 0.60 0.40 1.000 66
"OPEN BRUSH" COMMERCIAL SUBAREA AVERAGE PERVIOU SUBAREA AVERAGE PERVIOU TRAVEL TIME COMPUTED US TRAVEL TIME THRU SUBARE AVERAGE FLOW DEPTH (FEET Tc (MIN.) = 7.99 SUBAREA AREA (ACRES) = EFFECTIVE AREA (ACRES) = AREA-AVERAGED Fp (INCH/H TOTAL AREA (ACRES) = END OF SUBAREA CHANNEL DEPTH (FEET) = 0.28 F LONGEST FLOWPATH FROM N	B 0.51 0.30 1.000 84 B 0.14 0.30 0.100 76 CLOSS RATE, Fp(INCH/HR) = 0.35 CLOSS RATE, Fp(INCH/HR) = 0.35 CLOSS RATE, Fp(INCH/HR) = 0.30 CLOSS RATE, Fp(INCH/HR) = 0.30 CLOSS RATE, FD(INCH/HR) = 1.63 CLOSS RATE, FLOW (CFS) = 4.96 2.26 AREA-AVERAGED Fm(INCH/HR) = 0.30 CLOSS RATE, FLOW RATE (CFS) = 4.96 2.3 PEAK FLOW RATE (CFS) = 9.01 CLOW HYDRAULICS: CLOW HYDRAULICS: CLOW VELOCITY (FEET/SEC.) = 2.92 DDE 10.00 TO NODE 12.00 = 573.00 FEET. CLOW TO NODE 13.00 IS CODE = 51
	AREA (EXISTING ELEMENT) <<<<<
ELEVATION DATA: UPSTREA CHANNEL LENGTH THRU SUE CHANNEL BASE(FEET) = MANNING'S FACTOR = 0.03	

"OPEN BRUSH" B 2.14 0.30 1.000 84 COMMERCIAL A 0.11 0.40 0.100 52 В 0.64 0.30 0.100 76 COMMERCIAL SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.33 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.827 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 16.05 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.54 AVERAGE FLOW DEPTH (FEET) = 0.39 TRAVEL TIME (MIN.) = 1.52 Tc(MIN.) = 9.51 SUBAREA AREA(ACRES) = 3.90 SUBAREA RUNOFF(CFS) = 14.06EFFECTIVE AREA(ACRES) = 6.16 AREA-AVERAGED Fm(INCH/HR) = 0.28 AREA-AVERAGED Fp(INCH/HR) = 0.33 AREA-AVERAGED Ap = 0.86 TOTAL AREA(ACRES) = 6.2 PEAK FLOW RATE(CFS) = 22.15 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.47 FLOW VELOCITY(FEET/SEC.) = 3.97 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 896.00 FEET. FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< _____ MAINLINE TC(MIN.) = 9.51 * 100 YEAR RAINFALL INTENSITY (INCH/HR) = 4.279 SUBAREA LOSS RATE DATA (AMC III): SCS SOIL AREA DEVELOPMENT TYPE/ Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" A 0.10 0.40 1.000 66 NATURAL FAIR COVER "OPEN BRUSH" в 0.94 0.30 1.000 84 RESIDENTIAL "8-10 DWELLINGS/ACRE" B 0.45 0.30 0.400 76 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.31 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.819SUBAREA AREA (ACRES) = 1.49 SUBAREA RUNOFF (CFS) = 5.40 EFFECTIVE AREA (ACRES) = 7.65 AREA-AVERAGED Fm (INCH/HR) = 0.28 AREA-AVERAGED $F_{p}(INCH/HR) = 0.33$ AREA-AVERAGED Ap = 0.85 TOTAL AREA (ACRES) = 7.6 PEAK FLOW RATE (CFS) = 27.55 FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 9.51 RAINFALL INTENSITY (INCH/HR) = 4.28 AREA-AVERAGED Fm (INCH/HR) = 0.28AREA-AVERAGED Fp(INCH/HR) = 0.33AREA-AVERAGED Ap = 0.85 EFFECTIVE STREAM AREA(ACRES) = 7.65 TOTAL STREAM AREA(ACRES) = 7.65 PEAK FLOW RATE (CFS) AT CONFLUENCE = 27.55

STREAM NUMBER	(CFS) (MI	c Intensity N.) (INCH/HR) .73 2.818 .51 4.279	(INCH/HR)	G	ACRES)	NODE
		TIME OF CONC D FOR 2 STRE		TIO		
STREAM NUMBER	DW RATE TABL Q T (CFS) (MI 54.46 9 52.81 19	E ** c Intensity N.) (INCH/HR) .51 4.279 .73 2.818	Fp(Fm) (INCH/HR) 0.32(0.29) 0.32(0.29)	Ap (1 0.89 0.91	Ae ACRES) 15.1 23.1	HEADWATER NODE 10.00 1.00
PEAK FLOW H EFFECTIVE A AREA-AVERAC TOTAL AREA LONGEST FLO	RATE(CFS) = AREA(ACRES) GED Fp(INCH/ (ACRES) = DWPATH FROM	NODE 1.0	Tc(MIN.) = AREA-AVERA AREA-AVERAGE 0 TO NODE	GED Fm(I) D Ap = 0 6.00 =).89 = 158	6.00 FEET.
START AREA NEW SUBAREA	В					+
NEW SOBARE						l I
>>>>RATION >>USE TIME-	NAL METHOD I -OF-CONCENTR	20.00 TO NITIAL SUBARE ATION NOMOGRA	A ANALYSIS<< PH FOR INITI	<<< AL SUBAR		1
INITIAL SUP	BAREA FLOW-I	ENGTH(FEET) = AM(FEET) =	146.00		FEET) =	842.10
SUBAREA ANA * 100 YEAR SUBAREA TC	ALYSIS USED RAINFALL IN AND LOSS RA)/(ELEVATION MINIMUM Tc(MI TENSITY(INCH/ TE DATA(AMC I SCS SOIL	N.) = 6.0 HR) = 5.567 II):	12	Ap	SCS To
LAND U	JSE	GROUP (A	CRES) (INCH	/HR) (D	AP ECIMAL)	CN (MIN.)
SUBAREA AVE	LINGS/ACRE" ERAGE PERVIC	B US LOSS RATE, US AREA FRACT 4.95	Fp(INCH/HR)	= 0.30		76 6.01
		1.01 PEA	K FLOW RATE(CFS) =	4.95	
SUBAREA RUN	(ACRES) =					
SUBAREA RUN TOTAL AREA	******	************* 21.00 TO				
SUBAREA RUN TOTAL AREA ************ FLOW PROCES >>>>>COMPUT >>>>> (STREH	SS FROM NODE CE STREET FL TABLE SEC	*****	NODE 22 E THRU SUBAR D) <<<<<	.00 IS C 	DDE = 6	2

STREET HALFWIDTH (FEET) = 30.00DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.19 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.40HALFSTREET FLOOD WIDTH(FEET) = 13.09 AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.96 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.17 STREET FLOW TRAVEL TIME (MIN.) = 1.46 Tc (MIN.) = 7.47 * 100 YEAR RAINFALL INTENSITY (INCH/HR) = 4.915SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ар SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "8-10 DWELLINGS/ACRE" B 2.42 0.30 0.400 76 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.400 SUBAREA AREA (ACRES) = 2.42 SUBAREA RUNOFF (CFS) = 10.44 EFFECTIVE AREA (ACRES) = 3.43 AREA-AVERAGED Fm (INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.40 TOTAL AREA(ACRES) = 3.4 PEAK FLOW RATE(CFS) = 14.80 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 15.27 FLOW VELOCITY (FEET/SEC.) = 3.25 DEPTH*VELOCITY (FT*FT/SEC.) = 1.41 LONGEST FLOWPATH FROM NODE 20.00 TO NODE 22.00 = 405.00 FEET. FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 62 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>> (STREET TABLE SECTION # 1 USED) <<<<< _____ UPSTREAM ELEVATION (FEET) = 838.46 DOWNSTREAM ELEVATION (FEET) = 832.28 STREET LENGTH (FEET) = 342.00 CURB HEIGHT (INCHES) = 8.0 STREET HALFWIDTH (FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 18.32 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.45

HALFSTREET FLOOD WIDTH (FEET) = 15.90AVERAGE FLOW VELOCITY (FEET/SEC.) = 3.74 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.67 STREET FLOW TRAVEL TIME(MIN.) = 1.52 Tc(MIN.) = 9.00 * 100 YEAR RAINFALL INTENSITY (INCH/HR) = 4.419 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fρ Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "8-10 DWELLINGS/ACRE" B 1.82 0.30 0.400 76 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.400 SUBAREA AREA(ACRES) = 1.82 SUBAREA RUNOFF(CFS) = 7.04 EFFECTIVE AREA(ACRES) = 5.25 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.40TOTAL AREA (ACRES) = 5.2 PEAK FLOW RATE (CFS) = 20.31 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 16.60 FLOW VELOCITY (FEET/SEC.) = 3.83 DEPTH*VELOCITY (FT*FT/SEC.) = 1.76 LONGEST FLOWPATH FROM NODE 20.00 TO NODE 23.00 = 747.00 FEET. ·-----| START AREA C | NEW SUBAREA RUN | JULY 2017 FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH (FEET) = 328.00 ELEVATION DATA: UPSTREAM(FEET) = 876.50 DOWNSTREAM(FEET) = 850.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.849 * 100 YEAR RAINFALL INTENSITY (INCH/HR) = 3.774 SUBAREA TC AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fρ Ap SCS Tc GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE NATURAL FAIR COVER 0.80 0.30 1.000 84 11.85 "OPEN BRUSH" В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA RUNOFF(CFS) = 2.50TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = 2.50 FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 850.00 DOWNSTREAM(FEET) = 847.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 192.00 CHANNEL SLOPE = 0.0156

CHANNEL BASE (FEET) = 3.00 "Z" FACTOR = 2.000MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 * 100 YEAR RAINFALL INTENSITY (INCH/HR) = 3.580 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER в 1.05 0.30 1.000 "OPEN BRUSH" 84 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.05 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.80 AVERAGE FLOW DEPTH (FEET) = 0.38 TRAVEL TIME (MIN.) = 1.14 Tc(MIN.) = 12.99SUBAREA AREA(ACRES) = 1.05 SUBAREA RUNOFF(CFS) = 3.10 EFFECTIVE AREA (ACRES) = 1.85 AREA-AVERAGED Fm (INCH/HR) = 0.30AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 1.8 PEAK FLOW RATE(CFS) = 5.46 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.45 FLOW VELOCITY(FEET/SEC.) = 3.09 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00 = 520.00 FEET. _____ END OF STUDY SUMMARY: TOTAL AREA (ACRES) = 1.8 TC (MIN.) = 12.99 EFFECTIVE AREA(ACRES) = 1.85 AREA-AVERAGED Fm(INCH/HR) = 0.30 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 1.000 PEAK FLOW RATE (CFS) = 5.46_____ END OF RATIONAL METHOD ANALYSIS

MITIGATED FLOW RATES

	TOTAL CATCHMENT SOIL-LOSS VOLUME (ACRE-FEET) = 3.12

FLOOD ROUTING ANALYSIS	
USING COUNTY HYDROLOGY MANUAL OF ORANGE(1986) (c) Copyright 1989-2014 Advanced Engineering Software (aes)	
Ver. 21.0 Release Date: 06/01/2014 License ID 1419	
Vel. 21.0 Refease bace. 00/01/2014 Electise ib 1415	
Analysis prepared by:	

OAK GROVE DEVELOPMENT *	
AREAS A 10-YEAR HC PROPOSED CONDITION * SMALL AREA HYDROGRAPH MODEL - JULY 2017 *	
MATE WER UIDROGUEL HODER - OOT 501/	
FILE NAME: OAKA10.DAT	
TIME/DATE OF STUDY: 20:50 08/15/2017	
The Crell June Unit Hudrograph Dressdurge in Critica I	
The Small Area Unit Hydrograph Procedures in Section J	
of the Hydrology Manual provides estimates of runoff hydrograph and runoff volume for watersheds whose time of	
concentration is less than 25 minutes. The PROGRAM User	
should check the applicability of using the small area unit	
hydrograph procedures, and follow the guidelines in	
Sections J and K.5 in complex watershed modeling.	
Sections of and R.S. In complex watershed modeling.	

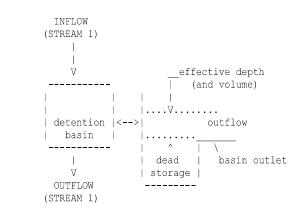
FLOW PROCESS FROM NODE 1.00 TO NODE 5.00 IS CODE = 1.2	
>>>>SUBAREA RUNOFF (SMALL AREA UNIT-HYDROGRAPH ANALYSIS) <<<<<	
(SMALL AREA UNIT-HYDROGRAPH ADDED TO STREAM #1)	
RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90	
TOTAL CATCHMENT AREA (ACRES) = 15.44	
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.295	
LOW LOSS FRACTION = 0.726	
TIME OF CONCENTRATION (MIN.) = 20.70	
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA	
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED:	
RETURN FREQUENCY (YEARS) = 10	
5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.34	
30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.72	
1-HOUR POINT RAINFALL VALUE (INCHES) = 0.95	
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.59	
6-HOUR POINT RAINFALL VALUE(INCHES) = 2.20	
24-HOUR POINT RAINFALL VALUE(INCHES) = 3.68	
TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = 1.62	

VOLUME (ACRE-FEET) = 3.12

2 4 - H O U R S T O R M R U N O F F H Y D R O G R A P H

HYDROGRAPH IN ONE-MINUTE UNIT INTERVALS(CFS) (Notes: Time indicated is at END of Each Unit Intervals. Peak 5-minute rainfall intensity is modeled as a constant value for entire 5-minute period.)

TIME(HRS)	VOLUME (AF)	Q(CFS)	0.	5	.2		10.4	15.	5	20.7
15.800	0.6066	2.70		Q		V				
15.817	0.6104	2.80		Q		V				
15.833	0.6145	2.91		Q		V				
15.850	0.6186	3.02		Q		V				
15.867	0.6229	3.13		Q		V				
15.883	0.6274	3.24		Q		V	•			
15.900	0.6320	3.35		Q	•	V				
15.917	0.6368	3.46	•	Q	•	V	•			
15.933	0.6417	3.57	•	Q		V	•			
15.950	0.6468	3.68		Q		V				
15.967	0.6520	3.79		Q		V				
15.983	0.6574	3.90		Q		V				
16.000	0.6629	4.01		Q		V				
16.017	0.6690	4.46		Q		V				
16.033	0.6763	5.27			Q	V				
16.050	0.6846	6.07			.Q	V				
16.067	0.6941	6.88				Q V				
16.083	0.7047	7.68				Q V				
16.100	0.7164	8.49				QV				
16.117	0.7292	9.29					v.			
16.133	0.7431	10.10					vo.			
16.150	0.7581	10.90					v.Q			
16.167	0.7743	11.71					V.Q			
16.183	0.7915	12.52					V.	0.		
16.200	0.8098	13.32					V	· ·		
16.217	0.8293	14.13	÷				v			
16.233	0.8499	14.93	•		•		.v	Q.		•
16.250	0.8715	15.74	·				.v	ž. Q		
16.267	0.8943	16.54	·				. v	× .		•
16.283	0.9182	17.35	•		•		. v	•	žQ	•
16.300	0.9432	18.15	•		•			, .	ΣQ	•
16.317	0.9693	18.96	•		•		• •	v .	Č	•
16.333	0.9965	19.76	·		•		•	v .	×	0.
16.350	1.0251	20.73	·		•		•	v .		ý · 0
16.367	1.0526	19.99	•		•		•	v.		ο.
16.383	1.0789	19.06	•		·		·	v.	C	~ ·
16.303	1.1039	19.00	•		•		·	v . V .	0	•
16.400	1.1276	17.20	·		•		•	v . v .	Q	•
16.417	1.1276	16.28	·		·		·	v . V.		•
			·		·		·		×	•
16.450	1.1711	15.35	·		•		•	Q.		•
16.467	1.1910	14.42	·		•		•	QV.		•
16.483	1.2096	13.50	·		·		•	Q V.		•
16.500	1.2269	12.57	•		•		•	Q V		•
16.517	1.2429	11.64	·		•		. Q	V		•
16.533	1.2577	10.72	•				Q	•	V	•


16.550	1.2712	9.79	•	•	Q.	.V	•
16.567	1.2834	8.86	•	•	Q.	.V	
16.583	1.2943	7.93	•	. 🤇	2.	. V	
16.600	1.3040	7.01		. Q		. V	
16.617	1.3123	6.08		.Q		. V	
16.633	1.3194	5.15		Q.		. V	
16.650	1.3253	4.23		Q.	•	. V	
16.667	1.3298	3.30		Q.		. V	
16.683	1.3331	2.37	. Q			. V	
16.700	1.3353	1.61	. Q			. V	
16.717	1.3374	1.52	. Q	•	•	. V	
16.733	1.3394	1.49	. Q	•		. V	
16.750	1.3415	1.47	. Q			. V	•
16.767	1.3435	1.45	. Q			. V	
16.783	1.3454	1.43	. Q			. V	
16.800	1.3474	1.41	. Q		•	. V	•

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated Peak Flow Rate	Duration (minutes)
0%	1009.0
10%	295.0
20%	195.0
30%	165.0
40%	145.0
50%	120.0
60%	100.0
70%	70.0
80%	45.0
90%	25.0

>>>>FLOW-THROUGH DETENTION BASIN ROUTING MODEL APPLIED TO STREAM #1<<<<<

- 3 -

- 4

ROUTE RUNOFF HYDROGRAPH FROM STREAM NUMBER 1 THROUGH A FLOW-THROUGH DETENTION BASIN	
SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS:	
DEAD STORAGE(AF) = 0.000	
SPECIFIED DEAD STORAGE(AF) FILLED = 0.000	
SPECIFIED EFFECTIVE VOLUME(AF) FILLED ABOVE OUTLET =	0.000
DETENTION BASIN CONSTANT LOSS RATE(CFS) = 0.00	

BASIN DEPTH VERSUS OUTFLOW AND STORAGE INFORMATION:

INTERVAL	DEPTH	OUTFLOW	STORAGE
NUMBER	(FT)	(CFS)	(AF)
1	0.00	0.00	0.000
2	1.00	11.03	0.180
3	2.00	15.60	0.410
4	3.00	19.10	0.690

MODIFIED-PULS BASIN ROUTING MODEL RESULTS (1-MINUTE COMPUTATION INTERVALS): (Note: Computed EFFECTIVE DEPTH and VOLUME are estimated at the clock time; MEAN OUTFLOW is the average value during the unit interval.)

CLOCK TIME (HRS)	DEAD-STORAGE FILLED(AF)	INFLOW (CFS)	LOSS (CFS)	EFFECTIVE DEPTH(FT)	MEAN OUTFLOW (CFS)	EFFECTIVE VOLUME (AF)
15.817	0.000	2.80	0.00	0.18	2.0	0.033
15.833	0.000	2.91	0.00	0.19	2.1	0.034
15.850	0.000	3.02	0.00	0.20	2.1	0.036
15.867	0.000	3.13	0.00	0.20	2.2	0.037
15.883	0.000	3.24	0.00	0.21	2.3	0.038
15.900	0.000	3.35	0.00	0.22	2.4	0.039
15.917	0.000	3.46	0.00	0.23	2.5	0.041
15.933	0.000	3.57	0.00	0.23	2.5	0.042
15.950	0.000	3.68	0.00	0.24	2.6	0.044
15.967	0.000	3.79	0.00	0.25	2.7	0.045
15.983	0.000	3.90	0.00	0.26	2.8	0.047
16.000	0.000	4.01	0.00	0.27	2.9	0.048
16.017	0.000	4.46	0.00	0.28	3.0	0.050
16.033	0.000	5.27	0.00	0.29	3.2	0.053
16.050	0.000	6.07	0.00	0.32	3.4	0.057
16.067	0.000	6.88	0.00	0.34	3.6	0.061
16.083	0.000	7.68	0.00	0.37	3.9	0.066
16.100	0.000	8.49	0.00	0.40	4.3	0.072
16.117	0.000	9.29	0.00	0.44	4.6	0.079
16.133	0.000	10.10	0.00	0.48	5.0	0.086
16.150	0.000	10.90	0.00	0.52	5.5	0.093
16.167	0.000	11.71	0.00	0.56	6.0	0.101
16.183	0.000	12.52	0.00	0.61	6.5	0.109
16.200	0.000	13.32	0.00	0.66	7.0	0.118
16.217	0.000	14.13	0.00	0.71	7.5	0.127
16.233	0.000	14.93	0.00	0.76	8.1	0.137
16.250	0.000	15.74	0.00	0.81	8.7	0.146
16.267	0.000	16.54	0.00	0.87	9.3	0.156

16.283	0.000	17.35	0.00	0.93	9.9	0.167
16.300	0.000	18.15	0.00	0.98	10.5	0.177
16.317	0.000	18.96	0.00	1.04	11.0	0.188
16.333	0.000	19.76	0.00	1.09	11.3	0.200
16.350	0.000	20.73	0.00	1.14	11.5	0.212
16.367	0.000	19.99	0.00	1.19	11.8	0.224
16.383	0.000	19.06	0.00	1.23	12.0	0.233
16.400	0.000	18.13	0.00	1.27	12.2	0.242
16.417	0.000	17.20	0.00	1.30	12.3	0.248
16.433	0.000	16.28	0.00	1.32	12.4	0.254
16.450	0.000	15.35	0.00	1.34	12.5	0.258
16.467	0.000	14.42	0.00	1.35	12.6	0.260
16.483	0.000	13.50	0.00	1.35	12.6	0.261
16.500	0.000	12.57	0.00	1.35	12.6	0.261
16.517	0.000	11.64	0.00	1.35	12.6	0.260
16.533	0.000	10.72	0.00	1.34	12.6	0.257
16.550	0.000	9.79	0.00	1.32	12.5	0.253
16.567	0.000	8.86	0.00	1.30	12.4	0.249
16.583	0.000	7.93	0.00	1.27	12.3	0.242
16.600	0.000	7.01	0.00	1.24	12.2	0.235
16.617	0.000	6.08	0.00	1.24	12.0	0.233
16.633	0.000	5.15	0.00	1.16	11.9	0.218
16.650	0.000	4.23	0.00	1.12	11.7	0.208
16.667	0.000	3.30	0.00	1.07	11.5	0.196
16.683	0.000	2.37	0.00	1.02	11.2	0.184
16.700	0.000	1.61	0.00	0.95	10.8	0.171
16.717	0.000	1.52	0.00	0.89	10.1	0.160
16.733	0.000	1.49	0.00	0.83	9.4	0.149
16.750	0.000	1.47	0.00	0.77	8.8	0.139
16.767	0.000	1.45	0.00	0.72	8.2	0.129
16.783		1.43			7.7	
16.800	0.000	1.41	0.00	0.63	7.2	0.113
PROCESS SUMMARY OF :						
INFLOW VOLUME =	1.615	AF'				
BASIN STORAGE =			0.00	0 AF INIT:	LALLY FILL	ιED)
OUTFLOW VOLUME =						
LOSS VOLUME =	0.000	AF				
* * * * * * * * * * * * * * * * * * * *	********	********	*******	******	*******	*****
FLOW PROCESS FROM NO	UDE 5	OO TO NOT)E 6.	00 TS CODE	7. = 4	
>>>>MODEL PIPEFLOW	ROUTING O	F STREAM #	1<<<<<			
	===========					======
NODEL DIDEEL	NI DOUETNO		. 1			
MODEL PIPEFL						
STORAGE EFFE				,		
VELOCITIES AN						
EACH UNIT IN	PERVAL (NORJ					
OF (.82)(DIA		DONDED AD	THE HDOT	REAM INLE	C:	
	METER) ARE	PONDED AT	. IND ULDI	a canal and a second and a		
UNIT INTERVAL						
UNIT INTERVA (0.938)(DIAM)	L FLOW VEL					
	L FLOW VEL					
	L FLOW VEL					
(0.938)(DIAM)	L FLOW VEL(ETER):	OCITY COME	PUTED USIN	IG Dn UP To)	
(0.938)(DIAM) PIPELENGTH(F	L FLOW VEL STER): F) = 1	OCITY COME 42.00	PUTED USIN MANNINGS	IG Dn UP To)	
(0.938)(DIAM)	L FLOW VEL STER): F) = 1	OCITY COME 42.00	PUTED USIN MANNINGS	IG Dn UP To)	
(0.938)(DIAM) PIPELENGTH(F	L FLOW VEL STER): F) = 1	OCITY COME 42.00	PUTED USIN MANNINGS 3.00	IG Dn UP To)	

					16.6 16.6 16.6
NORMAL DEF	TH VELOCI	TY PIPE ROU	TING RESULT	rs:	16.7 16.7
TIME	INFLOW	VELOCITY	OUTFLOW	UPSTREAM	16.7
(HRS)	(CFS)	(FPS)	(CFS)	PONDING (AF)	16.7
15.800	1.93	4.86	1.91	0.000	16.7
15.817	2.00	4.91 4.95	1.98	0.000	16.7
15.833	2.07	4.95	2.05	0.000	16.8
15.850	2.14	5.00	2.12	0.000	
15.867	2.22	5.06	2.19	0.000	
15.883	2.30	5.11	2.27	0.000	* * * * * * * * * * * * * * * *
15.900	2.38	5.17	2.35	0.000	FLOW PROCESS
15.917	2.46	5.23	2.44	0.000	
15.933	2.55	5.29	2.52	0.000	>>>>SUBAREA
15.950	2.63	5.35	2.61	0.000	
15.967	2.72	5.40	2.70	0.000	
15.983	2.81	5.45	2.79	0.000	(SMALL AREA
16.000	2.91	5.50	2.88	0.000	
16.017	3.01	5.56	2.98	0.000	RATIONAL M
16.033	3.16	5.64	3.12	0.000	TOTAL CATC
16.050	3.37	5.75	3.31	0.000	SOIL-LOSS
16.067	3.62	5.89	3.55	0.000	LOW LOSS F
16.083	3.92	6.05	3.84	0.000	TIME OF CC
16.100	4.25	6.20	4.16	0.000	SMALL AREA
16.117	4.25	6.36	4.53	0.000	ORANGE COU
16.133	5.04	6.53	4.94	0.000	RETURN FRE
16.150	5.48	6.70	5.37	0.000	5-MINUT
16.167	5.95	6.86	5.83	0.000	30-MINUT
16.183	6.45	7.02	6.33	0.000	1-HOUR
16.200	6.98	7.19	6.85	0.000	3-HOUR
16.217	7.52	7.36	7.40	0.000	6-HOUR
16.233	8.09	7.53	7.97	0.000	24 - HOUR
16.250	8.68	7.65	8.53	0.000	
16.267	9.28	7.77	9.14	0.000	
16.283	9.90	7.90	9.76	0.000	TOTAL CATC
16.300	10.54	8.03	10.40	0.000	TOTAL CATC
16.317	11.02	8.12	10.92	0.000	
16.333	11.31	8.17	11.24	0.000	
16.350	11.55	8.20	11.49	0.000	
16.367	11.79	8.24	11.73	0.000	
16.383	11.99	8.28	11.95	0.000	
16.400	12.17	8.31	12.14	0.000	
16.417	12.32	8.34	12.29	0.000	
16.433	12.44	8.36	12.42	0.000	
16.450	12.53	8.38	12.51	0.000	
16.467	12.60	8.39	12.58	0.000	
16.483	12.63	8.39	12.62	0.000	
16.500	12.64	8.40	12.64	0.000	
16.517	12.63	8.39	12.63	0.000	
16.533	12.59	8.39	12.60	0.000	
16.550	12.53	8.37	12.54	0.000	
16.567	12.33	8.36	12.46	0.000	
16.583	12.33	8.34	12.40	0.000	
			+ L • J J		

16.617	12.05	8.28 8.26	12.08	0.000	
16.633	11.87	8.26	11.91		
16.650	11.68	8.23 8.19	11.72		
10.00/	11.4/	8.19	11.51	0.000	
16.683		8.15			
16.700 16.717	10.81	8.09	10.91 10.29	0.000	
16 733	0 11	7.95	10.29	0.000	
16.750	9.44 8.80	7.80	9.60 8.95	0.000	
16.767	8 20	7.55	8 35	0.000	
16.783	7.66	7.40	7.78	0.000	
16.800	7.15	7.24	7.26	0.000	
				* * * * * * * * * * * * * * * * * * * *	* * * * * * * * *
FLOW PROCESS FROM				.00 IS CODE = 1.2	
>>>>SUBAREA RUNC		AREA UNIT-	HYDROGRAPH	ANALYSIS) <<<<<	
	========				=======
(SMALL AREA UNIT-	HYDROGRAP	H ADDED TO	STREAM #2)		
RATIONAL METHOD TOTAL CATCHMENT)	
SOIL-LOSS RATE,	Fm, (INCH	/HR) = 0.2	78		
LOW LOSS FRACTI	ON = 0.70	3			
TIME OF CONCENT	RATION (MI	N.) = 10.06			
SMALL AREA PEAK	Q COMPUT	ED USING PE	AK FLOW RAT	TE FORMULA	
ORANGE COUNTY "	VALLEY" R	AINFALL VAL	UES ARE USE	ED:	
RETURN FREQUENC	Y(YEARS)	= 10			
5-MINUTE POI	NT RAINFA	LL VALUE(IN	(CHES) = 0.	.34	
30-MINUTE POI					
1-HOUR POI					
3-HOUR POI					
6-HOUR POI					
24-HOUR POI	NT RAINFA	LL VALUE(IN	(CHES) = 3.	.68	
TOTAL CATCHMENT TOTAL CATCHMENT	RUNOFF	VOLUME (AC	RE-FEET) =	0.85	
TOTAL CATCHMENT	SOIL-LOS	S VOLUME (AC	RE-FEET) =	1.50	
		_	8 -		

24-HOUR STORM RUNOFF HYDROGRAPH

HYDROGRAPH IN ONE-MINUTE UNIT INTERVALS(CFS) (Notes: Time indicated is at END of Each Unit Intervals. Peak 5-minute rainfall intensity is modeled as a constant value for entire 5-minute period.)

TIME (HRS)	VOLUME (AF)	Q(CFS)	0.		4.2		8.4	1	2.6		16.8
15.800	0.3437	2.34	•	Q		V					
15.817	0.3471	2.49		Q	•	V			•		
15.833	0.3508	2.64		Q		V			•		
15.850	0.3547	2.80		Q	•	V			•		
15.867	0.3587	2.97		Ç	2.	V					
15.883	0.3631	3.14		Ç	2.		v.				
15.900	0.3676	3.30		Ç	<u>)</u> .		v.				
15.917	0.3724	3.47	•		Q.		v.				
15.933	0.3774	3.64			Q.		v.		•		
15.950	0.3827	3.80			Q.		v.				
15.967	0.3881	3.97			Q.		ν.				
15.983	0.3938	4.14			Q.		ν.				
16.000	0.3997	4.30			Q		ν.				
16.017	0.4066	5.00			.Q		v.				
16.033	0.4152	6.24				Q	v.				
16.050	0.4255	7.47					Q V				
16.067	0.4375	8.70					Q				
16.083	0.4512	9.94					.V	Q			
16.100	0.4666	11.17					. \	ν̈́Q			
16.117	0.4837	12.40					. \		Q.		
16.133	0.5025	13.64						V	~. Q		
16.150	0.5229	14.87						V	. ~	Q	
16.167	0.5451	16.11					-	V		~	ç.
16.183	0.5683	16.80					-	v			Q.
16.200	0.5884	14.64					-	V		0	~
16.217	0.6065	13.13	÷						, .o	×.	÷
16.233	0.6225	11.63	÷						v.		÷
16.250	0.6365	10.13					•	Q	v		·
16.267	0.6484	8.63	·		·		Q.	×	v		·
16.283	0.6582	7.13	·		•	Q			.v		•
16.300	0.6660	5.63	•		•	Q	•		.v		•
16.317	0.6717	4.13	·		ç.	×	•		.v		·
16.333	0.6753	2.63	÷	Q	×.		•		.v		•
16.350	0.6776	1.68		Q	•		•		. v		•
16.367	0.6798	1.61	•	Q	•		·		. v		•
16.383	0.6819	1.54	•	Q	•		•		. v		•
16.400	0.6840	1.47	:	õ	•		•		• • • V		•
16.417	0.6859	1.47	:	Q	•		•		. v		•
16.433	0.6877	1.40	:	Q	•		•		• • • v		·
16.455	0.6895	1.33	:		·		•		• • • v		·
16.450	0.6895	1.27		-	•		•		• v • v		•
		1.20		Q	•		•		• v • v		•
16.483	0.6927			Q	•		•				·
16.500	0.6941	1.06		Q	•		•		. V		·
16.517	0.6955	1.01		Q	•		•		. V		•
16.533	0.6969	0.98	•	Q	•		•		. V		•

16 550	0 6000	0.05					
16.550	0.6982		. Q	•	•	. V	•
16.567	0.6995	0.92 .	. Q	•	•	. V	•
16.583	0.7007	0.89 .	. Q		•	. V	•
16.600	0.7018	0.86 .	. Q			. V	
16.617	0.7030	0.83 .	.Q			. V	
16.633	0.7041	0.79 .	Q			. V	
16.650	0.7051	0.76 .	.Q			. V	•
16.667	0.7061	0.73 .	.Q			. V	
16.683	0.7071	0.71 .	.Q			. V	
16.700	0.7081	0.70 .	.Q		•	. V	
16.717	0.7090	0.69 .	Q		•	. V	
16.733	0.7100	0.68 .	.Q			. V	
16.750	0.7109	0.67 .	.Q		•	. V	
16.767	0.7118	0.66 .	.Q			. V	
16.783	0.7127	0.65 .	.Q			. V	
16.800	0.7136	0.64 .	Q			. V	

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated Peak Flow Rate	Duration (minutes)
0%	1009.0
10%	190.0
20%	125.0
30%	85.0
40%	75.0
50%	65.0
60%	50.0
70%	35.0
80%	25.0
90%	10.0

* * * * * * * * * * * * * * * * * * * *	****	*******
FLOW PROCESS FROM NO	ODE 6.00 TO NODE	6.00 IS CODE = 7
>>>>STREAM NUMBER 2	2 ADDED TO STREAM NUMBER	1<<<<<

*****	* * * * * * * * * * * * * * * * * * * *	*****
FLOW PROCESS FROM NODE	6.00 TO NODE	6.00 IS CODE = 11
>>>>VIEW STREAM NUMBER	1 HYDROGRAPH<<<<<	

STREAM HYDROGRAPH IN ONE-MINUTE UNIT INTERVALS(CFS) (Notes: Time indicated is at END of Each Unit Intervals. Peak 5-minute rainfall intensity is modeled as

	a cons	lant value	tor en	tire :	5-1111-C	iute peri	oa.)	
TIME(HRS)	VOLUME (AF)	Q(CFS) 0		7.5		15.0	22.5	30.0
15.800 15.817	0.9169 0.9231	4.25 4.47						· ·

15.850 0.9363 4.92 Q V \cdot <th>15.833</th> <th>0.9295</th> <th>4.69 .</th> <th>Q.</th> <th>v.</th> <th></th> <th></th> <th>1 [</th> <th>16.800</th>	15.833	0.9295	4.69 .	Q.	v.			1 [16.800
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						•	•		10,000
15.883 0.9599 5.41 0 V . . (Moral 15.940 0.9586 5.31 0 V . . an int 15.930 0.9583 6.46 0 V . . Percer 15.950 0.9931 6.41 0 V . . Percer 15.967 0.9933 6.47 0 V . . Percer 16.000 1.0127 7.18 Q V . . . Percer 16.010 1.0237 7.18 Q V .						•	•		TTME DI
15.900 0.9887 S.66 Q V . . an int 15.933 0.9733 6.16 Q V . . Percer 15.930 0.9341 6.41 Q V . . Percer 15.933 0.9393 6.67 Q V . . Percer 15.933 1.0028 6.92 Q V . . . Percer 16.003 1.0127 7.18 Q V . <						•	•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						•	•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			=			•	•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						•	•		Porcont
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						•	•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						•	•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						•	·		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						•	•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						•	•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						•	•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						•	•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			10.05	•		•	•		
16.100 1.1084 15.33 V Q 16.117 1.1317 16.93 V.Q 16.131 1.1373 18.57 V.Q 16.163 1.252 20.24 V.Q 16.163 1.2473 23.13 V.Q 16.200 1.2769 21.49 V.Q 16.233 1.3322 19.60 VQ 16.267 1.3824 17.77 VQ 16.283 1.4956 16.699 Q V 16.317 1.4484 15.05 Q V 16.333 1.4676 13.87 Q V 16.367 1.5041 13.49 Q V 16.433 1.5792 13.75 Q V				•		•	•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				•		•	•		
16.133 1.1573 18.57 . V. Q . 16.150 1.1852 20.24 . V. Q . 16.161 1.2473 23.13 . V. Q . 16.161 1.2473 23.13 . V. Q . 16.201 1.3052 20.53 . .V Q . 16.233 1.3322 19.60 . .V Q . 16.267 1.3824 17.77 . .VQ . 16.263 1.4076 13.87 . Q . 16.300 1.4277 16.03 . .QV . 16.333 1.4476 13.87 . Q V . 16.360 1.4857 13.18 . Q V . 16.361 1.541 13.34 . Q V . 16.433 1.592 13.75 . Q V . 16.431 1.6361 13.76 . Q V . 16.433 <			1 6 0 0	•		•	•		
16.150 1.1852 20.24 . V. Q. . 16.167 1.2154 21.94 . V. Q. . 16.200 1.2769 21.49 . V. Q. . 16.201 1.3769 21.49 . V. Q. . 16.233 1.3322 19.60 . .V Q. . 16.267 1.3579 18.67 . .VQ. . . 16.261 1.3579 18.67 . .QV. . . . 16.300 1.4277 16.03 . .QV. .				•			·		
16.167 1.2154 21.94 . V. Q. 16.183 1.2473 23.13 . V Q. . 16.183 1.2473 23.13 . V Q. . 16.201 1.3769 21.49 . V Q. . 16.233 1.3222 19.60 . . V Q. . 16.267 1.3824 17.77 . . VQ . . 16.267 1.3824 17.77 . . QV . . 16.301 1.4456 13.87 . Q V . . 16.317 1.4484 15.05 . Q V . . 16.350 1.4676 13.37 Q V .				•			•		
16.183 1.2473 23.13 . V Q . ************************************			01 04	·			•		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				•			•		* * * * * * * * * * *
16.217 1.3052 20.53 .				•			•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				•			•		1100 III0
16.250 1.3579 18.67 .			10 60	•			•		>>>>FL()
16.2671.382417.77VQ.16.2831.405616.89Q16.3001.427716.03QV.16.3171.448415.05.QV.16.3331.467613.87.QV.16.3501.485713.18.QV.16.36715.04113.34.QV.16.3831.522713.49.QV.16.4001.541413.61.QV.16.4331.579213.75.QV.16.4501.598213.78.QV.16.4671.617113.78.QV.16.4511.636113.76.QV.16.45213.57.QV16.5501.71113.78.QV.16.5501.711113.49.QV.16.5571.29513.57.QV.16.6331.695112.71.QV.16.63118.1012.71.QV.16.6511.81212.49.QV.16.6631.851611.99.QV.16.6641.81212.49				•			•		
16.2831.405616.89 <td></td> <td></td> <td>10 00</td> <td>•</td> <td></td> <td></td> <td>•</td> <td></td> <td></td>			10 00	•			•		
16.3001.427716.03 <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td>•</td> <td></td> <td></td>				•			•		
16.3171.448415.05.QV.16.3331.467613.87.QV.16.3351.485713.18.QV.16.35671.504113.34.QV.16.3831.522713.49.QV.16.4001.541413.61.QV.16.4171.560313.69.QV.16.4331.579213.75.QV.16.4501.598213.78.QV.16.4671.617213.78.QV.16.4831.636113.76.QV.16.5001.655013.77.QV.16.5171.673813.64.QV.16.5571.729513.57.QV.16.5561.711113.49.QV.16.5571.729513.37.QV.16.65671.729513.37.QV.16.66171.785512.90.QV.16.6501.818212.49.QV.16.6501.818212.49.QV.16.6671.851611.99.QV.16.6671.818212.49.QV <td< td=""><td></td><td></td><td></td><td>•</td><td></td><td></td><td>•</td><td></td><td></td></td<>				•			•		
16.3331.467613.87. Q V .16.3501.485713.18. Q V .16.3671.504113.34. Q V .16.3631.522713.49. Q V .16.4001.541413.61. Q V .16.4171.560313.69. Q V .16.4331.579213.75. Q V .16.4501.59213.78. Q V .16.4671.617213.78. Q V .16.4671.636113.76. Q V .16.5001.655013.70. Q V .16.5171.673813.64. Q V .16.5501.711113.49. Q V .16.5571.729513.57. Q V .16.5671.729513.57. Q V .16.5631.747713.24. Q V .16.6171.783512.90. Q V .16.6501.818212.49. Q V .16.6501.818212.49. Q V .16.6631.851611.99. Q V .16.7001.867611.60. Q V .<									
16.3501.485713.18. Q V.16.3671.504113.34. Q V.16.3831.522713.49. Q V.16.4001.541413.61. Q V.16.4171.560313.69. Q V.16.4331.579213.75. Q V.16.4501.598213.78. Q V.16.4671.617213.78. Q V.16.4831.636113.76. Q V.16.5001.655013.70. Q V.16.5171.673813.64. Q V.16.5501.711113.49. Q V.16.5501.711113.49. Q V.16.5671.729513.37. Q V.16.5671.783512.90. Q V.16.6331.801012.71. Q V.16.6671.835112.25. Q V.16.6331.851611.99. Q V.16.6631.851611.99. Q V.16.7171.882710.97. Q V.16.7501.91019.62. Q V.16.7501.91019.62<									
16.3671.504113.34. Q V.16.3831.522713.49. Q V.16.4001.541413.61. Q V.16.4171.560313.69. Q V.16.4331.579213.75. Q V.16.4501.598213.78. Q V.16.4671.617213.78. Q V.16.4501.636113.76. Q V.16.5001.655013.70. Q V.16.5171.673813.64. Q V.16.5501.711113.49. Q V.16.5511.767313.37. Q V.16.5531.747713.24. Q V.16.6601.765713.08. Q V.16.6171.783512.90. Q V.16.6331.801012.71. Q V.16.6671.818212.49. Q V.16.6831.851611.99. Q V.16.7001.867611.60. Q V.16.7331.896910.28. Q V.16.7501.91019.62. Q .V.16.7671.9225 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
16.3831.522713.49. Q V .16.4001.541413.61. Q V .16.4171.560313.69. Q V .16.4331.579213.75. Q V .16.4501.598213.78. Q V .16.4671.617213.78. Q V .16.4831.636113.76. Q V .16.5001.655013.70. Q V .16.5171.673813.64. Q V .16.5501.711113.49. Q V .16.5501.711113.49. Q V .16.5671.729513.37. Q V .16.5631.747713.24. Q V .16.6171.783512.90. Q V .16.6331.801012.71. Q V .16.6671.818212.49. Q V .16.6631.851611.99. Q V .16.7001.867611.60. Q V .16.7171.882710.97. Q V .16.7501.91019.62. Q V .16.7571.9259.01. Q V . <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
16.4001.541413.61.QV.16.4171.560313.69.QV.16.4331.579213.75.QV.16.4501.598213.78.QV.16.4671.617213.78.QV.16.4831.636113.76.QV.16.5001.655013.70.QV.16.5171.673813.64.QV.16.5501.711113.49.QV.16.5671.729513.37.QV.16.5631.747713.24.QV.16.6601.765713.08.QV.16.6511.81212.49.QV.16.6511.88112.25.QV.16.6531.851611.99.QV.16.6671.835112.25.QV.16.6831.851611.99.QV.16.7711.882710.97.QV.16.7331.896910.28.QV.16.7501.91019.62.Q16.7671.92259.01.Q			10 10						
16.417 1.5603 13.69 .QV. 16.433 1.5792 13.75 .QV. 16.450 1.5982 13.78 .QV. 16.467 1.6172 13.78 .QV. 16.463 1.6361 13.76 .QV. 16.483 1.6361 13.76 .QV. 16.500 1.6550 13.70 .QV. 16.517 1.6738 13.64 .QV. 16.533 1.6925 13.57 .QV. 16.567 1.7111 3.49 .QV. 16.567 1.7295 13.37 .QV. 16.667 1.7657 13.08 .QV. 16.6617 1.7835 12.90 .QV. 16.663 1.8010 12.71 .QV. 16.667 1.8351 12.25 .QV. 16.663 1.8516 11.99 .QV. 16.700 1.8676 11.60 .QV. 16.733 1.8969 10.28 .QV. 16.755 1.9101 9.62 .Q.V 16.767 1.9225 9.01 .Q									
16.4331.579213.75.QV.16.4501.598213.78.QV.16.4671.617213.78.QV.16.4671.617213.78.QV.16.4831.636113.76.QV.16.5001.655013.70.QV.16.5171.673813.64.QV.16.5331.692513.57.QV.16.5501.711113.49.QV.16.5671.729513.37.QV.16.5631.747713.24.QV.16.6171.783512.90.QV.16.6331.801012.71.QV.16.6671.835112.25.QV.16.6631.851611.99.QV.16.7001.867611.60.QV.16.7331.896910.28.QV.16.7501.91019.62.Q.V.16.7671.92259.01.Q.V.									
16.4501.598213.78.QV.16.4671.617213.78.QV.16.4831.636113.76.QV.16.5001.655013.70.QV.16.5171.673813.64.QV.16.5331.692513.57.QV.16.5501.711113.49.QV.16.5671.729513.37.QV.16.5631.747713.24.QV.16.6171.783512.90.QV.16.6331.801012.71.QV.16.6671.818212.49.QV.16.6831.851611.99.QV.16.7001.867611.60.QV.16.7171.882710.97.QV.16.7331.896910.28.QV.16.7501.91019.62.QV.16.7671.92259.01.Q.V			10 85						
16.467 1.6172 13.78 .QV. 16.483 1.6361 13.76 .QV. 16.500 1.6550 13.70 .QV. 16.517 1.6738 13.64 .QV. 16.533 1.6925 13.57 .QV. 16.550 1.7111 13.49 .QV. 16.550 1.7111 13.49 .QV. 16.567 1.7295 13.37 .QV. 16.563 1.7477 13.24 .QV. 16.600 1.7657 13.08 .QV. 16.617 1.7835 12.90 .QV. 16.633 1.8010 12.71 .QV. 16.667 1.8182 12.49 .QV. 16.663 1.8182 12.49 .QV. 16.663 1.8161 11.99 .QV. 16.700 1.8676 11.60 .QV. 16.771 1.8827 10.97 .QV. 16.733 1.8969 10.28 .QV. 16.750 1.9101 9.62 .Q.V. 16.767 1.9225 9.01 .QV									
16.483 1.6361 13.76 . Q V . 16.500 1.6550 13.70 . Q V . 16.517 1.6738 13.64 . Q V . 16.533 1.6925 13.57 . Q V . 16.550 1.7111 13.49 . Q V . 16.567 1.7295 13.37 . Q V . 16.563 1.7477 13.24 . Q V . 16.600 1.7657 13.08 . Q V . 16.617 1.7835 12.90 . Q V . 16.633 1.8010 12.71 . Q V . 16.650 1.8182 12.49 . Q V . 16.667 1.8351 12.25 . Q V . 16.700 1.8676 11.60 . Q V . 16.717 1.8827 10.97 . Q V . 16.733 1.8969 10.28 . Q V . 16.750 1.9101 9.62 . Q V . 16.767 1.9225 9.01 . Q V .			10 80						
16.500 1.6550 13.70 . Q V . 16.517 1.6738 13.64 . Q V . 16.533 1.6925 13.57 . Q V . 16.550 1.7111 13.49 . Q V . 16.567 1.7295 13.37 . Q V . 16.567 1.7295 13.37 . Q V . 16.583 1.7477 13.24 . Q V . 16.600 1.7657 13.08 . Q V . 16.617 1.7835 12.90 . Q V . 16.633 1.8010 12.71 . Q V . 16.650 1.8182 12.49 . Q V . 16.667 1.8351 12.25 . Q V . 16.663 1.8516 11.99 . Q V . 16.717 1.8827 10.97 . Q V . 16.733 1.8969 10.28 . Q V . 16.750 1.9101 9.62 . Q V . 16.767 1.9225 9.01 . Q V .									
16.517 1.6738 13.64 $.$ Q V $.$ 16.533 1.6925 13.57 $.$ Q V $.$ 16.550 1.7111 13.49 $.$ Q V $.$ 16.567 1.7295 13.37 $.$ Q V $.$ 16.583 1.7477 13.24 $.$ Q V $.$ 16.600 1.7657 13.08 $.$ Q V $.$ 16.617 1.7835 12.90 $.$ Q V $.$ 16.633 1.8010 12.71 $.$ Q V $.$ 16.650 1.8182 12.249 $.$ Q V $.$ 16.667 1.8351 12.25 $.$ Q V $.$ 16.663 1.8516 11.99 $.$ Q V $.$ 16.700 1.8676 11.60 $.$ Q V $.$ 16.717 1.8827 10.97 $.$ Q V $.$ 16.733 1.8969 10.28 $.$ Q V $.$ 16.750 1.9101 9.62 $.$ Q $.$ V $.$ 16.767 1.9225 9.01 $.$ Q $.$ V $.$									
16.533 1.6925 13.57 . Q V . 16.550 1.7111 13.49 . Q V . 16.567 1.7295 13.37 . Q V . 16.583 1.7477 13.24 . Q V . 16.600 1.7657 13.08 . Q V . 16.617 1.7835 12.90 . Q V . 16.633 1.8010 12.71 . Q V . 16.650 1.8182 12.29 . Q V . 16.667 1.8182 12.25 . Q V . 16.667 1.8516 11.99 . Q V . 16.700 1.8676 11.60 . Q V . 16.733 1.8969 10.28 . Q V . 16.750 1.9101 9.62 . Q . V . 16.767 1.9225 9.01 . Q . V .									
16.5501.711113.49.QV.16.5671.729513.37.QV.16.5831.747713.24.QV.16.6001.765713.08.QV.16.6171.783512.90.QV.16.6331.801012.71.QV.16.6501.818212.49.QV.16.6671.835112.25.QV.16.6831.851611.99.QV.16.7001.867611.60.QV.16.7331.896910.28.QV.16.7501.91019.62.Q16.7671.92259.01.Q		1.6925	13.57 .			ν.			
16.567 1.7295 13.37 .QV. 16.583 1.7477 13.24 .QV. 16.600 1.7657 13.08 .QV. 16.617 1.7835 12.90 .QV. 16.633 1.8010 12.71 .QV. 16.650 1.8182 12.49 .QV. 16.667 1.8351 12.25 .QV. 16.683 1.8516 11.99 .QV. 16.700 1.8676 11.60 .QV. 16.733 1.8969 10.28 .QV. 16.750 1.9101 9.62 .Q 16.767 1.9225 9.01 .Q	16.550	1.7111	13.49 .			ν.			
16.583 1.7477 13.24 $.$ Q V $.$ 16.600 1.7657 13.08 $.$ Q V $.$ 16.617 1.7835 12.90 $.$ Q V $.$ 16.633 1.8010 12.71 $.$ Q V $.$ 16.650 1.8182 12.49 $.$ Q V $.$ 16.667 1.8351 12.25 $.$ Q V $.$ 16.683 1.8516 11.99 $.$ Q V $.$ 16.700 1.8676 11.60 $.$ Q V $.$ 16.717 1.8827 10.97 $.$ Q V $.$ 16.733 1.8969 10.28 $.$ Q V $.$ 16.750 1.9101 9.62 $.$ Q $.$ $.$ 16.767 1.9225 9.01 $.$ Q $.$ $.$	16.567	1.7295	13.37 .			ν.			
16.617 1.7835 12.90 .QV. 16.633 1.8010 12.71 .QV 16.650 1.8182 12.49 .QV 16.667 1.8351 12.25 .QV 16.683 1.8516 11.99 .QV. 16.700 1.8676 11.60 .QV. 16.717 1.8827 10.97 .QV. 16.733 1.8969 10.28 .QV. 16.750 1.9101 9.62 .Q 16.767 1.9225 9.01 .Q	16.583	1.7477	13.24 .			ν.			R
16.617 1.7835 12.90 . Q V . 16.633 1.8010 12.71 . Q V . 16.650 1.8182 12.49 . Q V . 16.667 1.8351 12.25 . Q V . 16.683 1.8516 11.99 . Q V . 16.700 1.8676 11.60 . Q V . 16.717 1.8827 10.97 . Q V . 16.733 1.8969 10.28 . Q V . 16.750 1.9101 9.62 . Q . V . 16.767 1.9225 9.01 . Q . V .	16.600	1.7657	13.08 .		ç.	ν.			Т
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16.617	1.7835	12.90 .	•		v.	•		S
16.650 1.8182 12.49 Q $V.$ $.$ 16.667 1.8351 12.25 Q $V.$ $.$ 16.683 1.8516 11.99 Q V $.$ 16.700 1.8676 11.60 Q V $.$ 16.717 1.8827 10.97 Q V $.$ 16.733 1.8969 10.28 Q V $.$ 16.750 1.9101 9.62 Q $.V$ $.$ 16.767 1.9225 9.01 $.Q$ $.V$ $.$	16.633	1.8010				V.			
16.683 1.8516 11.99 . Q V . 16.700 1.8676 11.60 . Q V . 16.717 1.8827 10.97 . Q V . 16.733 1.8969 10.28 . Q V . 16.750 1.9101 9.62 . Q . V 16.767 1.9225 9.01 . Q . V	16.650	1.8182	12.49 .			V.			
16.700 1.8676 11.60 . Q V . 16.717 1.8827 10.97 . Q V . 16.733 1.8969 10.28 . Q V . 16.750 1.9101 9.62 . Q . V . 16.767 1.9225 9.01 . Q . V .	16.667	1.8351	12.25 .		Q.	V.			
16.717 1.8827 10.97 . Q V . 16.733 1.8969 10.28 . Q V . 16.750 1.9101 9.62 . Q . V . 16.767 1.9225 9.01 . Q . . .	16.683	1.8516	11.99 .		Q.	V			
16.733 1.8969 10.28 . Q . V . 16.750 1.9101 9.62 . Q . V . 16.767 1.9225 9.01 . Q . V .						V	•	L I	
16.733 1.8969 10.28 . Q . V . 16.750 1.9101 9.62 . Q . . . 16.767 1.9225 9.01 . Q . . .	16.717	1.8827	10.97 .		Q.	V		L I	
16.767 1.9225 9.01 QV .		1.8969				V		L I	B
						.V	•	L I	
16.783 1.9341 8.43QV .		1.9225			2.	.V	•	L I	
	16.783	1.9341	8.43 .	.Q		.V	•	L I	
								I	

	1.9450	7.91 .	Q.	.v .
TTME DUR		OF PERCENTLES	OF ESTIMATED PE	 ak fi.ow rate.
			e assumed to have	
	ntaneous time d			J
an miscai	icaneous crine u	uraciony		
Percentil	le of Estimated		Duration	
	Flow Rate		(minutes)	
			(minuces)	
	 0%		1009.0	
	10%		510.0	
	20%		340.0	
	30%		255.0	
	40%		220.0	
	50%		195.0	
	60%		70.0	
	70%		55.0	
	80%		40.0	
	90%		15.0	
				* * * * * * * * * * * * * * * * * * * *
			DE 6.00 IS (CODE = 3.2
>>>>FLOW-	-THROUGH DETENT	ION BASIN ROUT	ING MODEL APPLIE	D TO STREAM #1<<<<<
	INFLO			
	(STREAM	1)		
	1			
	V		effective dep	
			(and volume)
			.V	
		tion IZ NI	+ £1	
	deten		outflow	
		in	OUTIIOW	
		in	······	
		in	•••••	outlet
	bas	in d	······	putlet
	bas 	in d st	 ^ \ ead basin (putlet
	bas V	in d st OW	 ^ \ ead basin (putlet
	bas V OUTFL	in d st OW	 ^ \ ead basin (outlet
	bas V OUTFL	in d st OW	 ^ \ ead basin (outlet
	bas V OUTFL	in d st OW	 ^ \ ead basin (outlet
ROU	bas V OUTFL	in d d st OW 1)	 ead basin d prage 	outlet
	bas V OUTFL (STREAM JTE RUNOFF HYDR	in d d st OW 1)	A basin of the second	outlet
THF	bas V OUTFL (STREAM JTE RUNOFF HYDR ROUGH A FLOW-TH	in d d st OW 1) OGRAPH FROM ST ROUGH DETENTIO	A basin o brage Crage REAM NUMBER 1 N BASIN	outlet
THF SPE	bas V OUTFL (STREAM JTE RUNOFF HYDR ROUGH A FLOW-TH CCIFIED BASIN C	in d st OW 1) OGRAPH FROM ST ROUGH DETENTIO ONDITIONS ARE	A basin o brage Crage REAM NUMBER 1 N BASIN	putlet
THF SPE I	bas V OUTFL (STREAM JTE RUNOFF HYDR ROUGH A FLOW-TH ECIFIED BASIN C DEAD STORAGE (AF	in d st OW 1) OGRAPH FROM ST ROUGH DETENTIO ONDITIONS ARE) = 0.000	A I basin o brage I REAM NUMBER 1 N BASIN AS FOLLOWS:	
THF SPE I S	bas V OUTFL (STREAM JTE RUNOFF HYDR ROUGH A FLOW-TH ECIFIED BASIN C DEAD STORAGE (AF SPECIFIED DEAD	in d st OW 1) OGRAPH FROM ST ROUGH DETENTIO ONDITIONS ARE) = 0.000 STORAGE (AF) FI	A I basin o brage REAM NUMBER 1 N BASIN AS FOLLOWS: LLED = 0.000	0
THF SPE I S	bas V OUTFL (STREAM DITE RUNOFF HYDR ROUGH A FLOW-TH ECIFIED BASIN C DEAD STORAGE (AF SPECIFIED DEAD SPECIFIED DEFFEC	in d st OGRAPH FROM ST ROUGH DETENTIO ONDITIONS ARE) = 0.000 STORAGE (AF) FI TIVE VOLUME (AF	A basin of	0 JTLET = 0.000
THF SPE I S	bas V OUTFL (STREAM DITE RUNOFF HYDR ROUGH A FLOW-TH ECIFIED BASIN C DEAD STORAGE (AF SPECIFIED DEAD SPECIFIED DEFFEC	in d st OGRAPH FROM ST ROUGH DETENTIO ONDITIONS ARE) = 0.000 STORAGE (AF) FI TIVE VOLUME (AF	A I basin o brage REAM NUMBER 1 N BASIN AS FOLLOWS: LLED = 0.000	0 JTLET = 0.000
THF SPE I S	bas V OUTFL (STREAM DITE RUNOFF HYDR ROUGH A FLOW-TH ECIFIED BASIN C DEAD STORAGE (AF SPECIFIED DEAD SPECIFIED DEFFEC	in d st OGRAPH FROM ST ROUGH DETENTIO ONDITIONS ARE) = 0.000 STORAGE (AF) FI TIVE VOLUME (AF	A basin of	0 JTLET = 0.000
THF SPF S S S I	bas V OUTFL (STREAM JTE RUNOFF HYDR ROUGH A FLOW-TH CIFIED BASIN C DEAD STORAGE (AF SPECIFIED DEAD SPECIFIED DEAD SPECIFIED EFFEC DETENTION BASIN	in d st OW 1) OGRAPH FROM ST ROUGH DETENTIO ONDITIONS ARE) = 0.000 STORAGE (AF) FI TIVE VOLUME (AF CONSTANT LOSS	A basin of basin of basin of basin of basin of basin	0 JTLET = 0.000 0.00
THF SPF S S S I	bas V OUTFL (STREAM JTE RUNOFF HYDR ROUGH A FLOW-TH CIFIED BASIN C DEAD STORAGE (AF SPECIFIED DEAD SPECIFIED DEAD SPECIFIED EFFEC DETENTION BASIN	in d st OW 1) OGRAPH FROM ST ROUGH DETENTIO ONDITIONS ARE) = 0.000 STORAGE (AF) FI TIVE VOLUME (AF CONSTANT LOSS	A basin of	0 JTLET = 0.000 0.00
THF SPF S S S BAS	bas V OUTFL (STREAM JTE RUNOFF HYDR ROUGH A FLOW-TH ECIFIED BASIN C DEAD STORAGE (AF SPECIFIED DEAD SPECIFIED DEAD SPECIFIED DEAT DETENTION BASIN SIN DEPTH VERSU	in d st OW 1) OGRAPH FROM ST ROUGH DETENTIO ONDITIONS ARE) = 0.000 STORAGE (AF) FI TIVE VOLUME (AF CONSTANT LOSS S OUTFLOW AND	A basin of basin of basin of basin of basin of basin of basin and basin basin and basin basin basin and basin basin and basin	0 JTLET = 0.000 0.00
THF SPF S S T BAS	bas V OUTFL (STREAM JTE RUNOFF HYDR ROUGH A FLOW-TH CIFIED BASIN C DEAD STORAGE (AF SPECIFIED DEAD SPECIFIED DEAD SPECIFIED EFFEC DETENTION BASIN	in d st OW 1) OGRAPH FROM ST ROUGH DETENTIO ONDITIONS ARE) = 0.000 STORAGE (AF) FI TIVE VOLUME (AF CONSTANT LOSS S OUTFLOW AND H OUTFLOW	A basin of	0 JTLET = 0.000 0.00

7.91 . Q . .V .

1.9450

1	0.00	0.00	0.000
2	1.00	15.88	0.260
3	2.00	22.46	0.590
4	3.00	27.51	0.970

MODIFIED-PULS BASIN ROUTING MODEL RESULTS(1-MINUTE COMPUTATION INTERVALS): (Note: Computed EFFECTIVE DEPTH and VOLUME are estimated at the clock time; MEAN OUTFLOW is the average value during the unit interval.)

CLOCK TIME (HRS)	DEAD-STORAGE FILLED(AF)	INFLOW (CFS)	LOSS (CFS)	EFFECTIVE DEPTH(FT)	MEAN OUTFLOW (CFS)	EFFECTIVE VOLUME (AF)
15.817	0.000	4.47	0.00	0.19	3.0	0.051
15.833	0.000	4.69	0.00	0.20	3.2	0.053
15.850	0.000	4.92	0.00	0.21	3.3	0.055
15.867	0.000	5.17	0.00	0.22	3.4	0.057
15.883	0.000	5.41	0.00	0.23	3.6	0.060
15.900	0.000	5.66	0.00	0.24	3.7	0.063
15.917	0.000	5.91	0.00	0.25	3.9	0.065
15.933	0.000	6.16	0.00	0.26	4.1	0.068
15.950	0.000	6.41	0.00	0.27	4.3	0.071
15.967	0.000	6.67	0.00	0.29	4.4	0.074
15.983	0.000	6.92	0.00	0.30	4.6	0.077
16.000	0.000	7.18	0.00	0.31	4.8	0.081
16.017	0.000	7.98	0.00	0.33	5.0	0.085
16.033	0.000	9.36	0.00	0.35	5.3	0.090
16.050	0.000	10.78	0.00	0.37	5.7	0.097
16.067	0.000	12.25	0.00	0.41	6.2	0.106
16.083	0.000	13.78	0.00	0.44	6.7	0.115
16.100	0.000	15.33	0.00	0.49	7.4	0.126
16.117	0.000	16.93	0.00	0.53	8.1	0.138
16.133	0.000	18.57	0.00	0.58	8.9	0.152
16.150	0.000	20.24	0.00	0.64	9.7	0.166
16.167	0.000	21.94	0.00	0.70	10.6	0.182
16.183	0.000	23.13	0.00	0.76	11.6	0.198
16.200	0.000	21.49	0.00	0.81	12.5	0.210
16.217	0.000	20.53	0.00	0.85	13.1	0.220
16.233	0.000	19.60	0.00	0.88	13.7	0.228
16.250	0.000	18.67	0.00	0.90	14.1	0.235
16.267	0.000	17.77	0.00	0.92	14.5	0.239
16.283	0.000	16.89	0.00	0.93	14.7	0.242
16.300	0.000	16.03	0.00	0.94	14.8	0.244
16.317	0.000	15.05	0.00	0.94	14.9	0.244
16.333	0.000	13.87	0.00	0.93	14.9	0.243
16.350	0.000	13.18	0.00	0.93	14.8	0.241
16.367	0.000	13.34	0.00	0.92	14.6	0.239
16.383	0.000	13.49	0.00	0.91	14.5	0.237
16.400	0.000	13.61	0.00	0.91	14.5	0.236
16.417	0.000	13.69	0.00	0.90	14.4	0.235
16.433	0.000	13.75	0.00	0.90	14.3	0.234
16.450	0.000	13.78	0.00	0.90	14.3	0.234
16.467	0.000	13.78	0.00	0.90	14.3	0.233
16.483	0.000	13.76	0.00	0.89	14.2	0.232
16.500	0.000	13.70	0.00	0.89	14.2	0.232
16.517	0.000	13.64	0.00	0.89	14.1	0.231

	16.533	0.000	13.57	0.00	0.89	14.1	0.230
	16.550	0.000	13.49	0.00	0.88	14.0	0.230
	16.567	0.000	13.37		0.88	14.0	0.229
	16.583	0.000	13.24	0.00	0.88	13.9	0.228
	16.600	0.000	13.08		0.87	13.9	0.227
	16.617	0.000	12.90	0.00	0.87	13.8	0.225
	16.633	0.000	12.71	0.00	0.86	13.7	0.224
	16.650	0.000	12.49 12.25	0.00 0.00	0.86	13.6	0.222
	16.667	0.000	12.25	0.00	0.85	13.5	0.221
	16.683	0.000	11.99	0.00	0.84	13.4	0.219
	16.700	0.000	11.60		0.83	13.3	0.216
	16.717	0.000	10.97		0.82		
	16.733	0.000	10.28	0.00	0.81	12.9	0.210
	16.750	0.000	9.62	0.00			
	16.767	0.000	9.01	0.00 0.00	0.77	12.4 12.1	0.201
	16.783	0.000	8.43	0.00	0.75	12.1	0.196
	16.800	0.000	7.91	0.00	0.73	11.8	0.190
********* FLOW PRO >>>>>VIE		********* DE 6 BER 1 HYD ======= ROGRAPH I ndicated -minute r	********* .00 TO NO 	DDE 6 <<<< INUTE UNIT O of Each intensity	.00 IS CON	DE = 11 S(CFS) rvals. d as	
LIME (HRS)	VOLUME (AF)	Q(CFS)	U.	5.0	TO'O	15.0	20.0
15.800	0.8682	2.92	. 0	. V		•	
15.817	0.8724	3.03	• Q	. V . V . V . V			
15.833	0.8724 0.8767	3.16	• Q	. V			
15.850	0.8813	3.29	. õ	. V			
15.867	0.8860	3.43	. Õ	. V			
15.883	0.0000	0.10	- ¥	• •			•
15.900	0 8909	3 5 8	(V V		•	
TO.200	0.8909	3.58	• •	2. V	•	•	
15 917	0.8909 0.8961	3.58 3.74	• •	2. V 2. V	•	• • •	• • •
15.917	0.8909 0.8961 0.9015	3.58 3.74 3.91	. (2. V 2. V 2. V		• • •	• • • •
15.933	0.8909 0.8961 0.9015 0.9071	3.58 3.74 3.91 4.08	. (2. V 2. V 2. V			• • • •
15.933 15.950	0.8909 0.8961 0.9015 0.9071 0.9130	3.58 3.74 3.91 4.08 4.26	· (2. V 2. V 2. V Q. V 0. V	• • • •		• • • •
15.933 15.950	0.8909 0.8961 0.9015 0.9071 0.9130	3.58 3.74 3.91 4.08	· (2. V 2. V 2. V	• • • •		• • • • •

- 14 -

Q. V .

. QV.

. QV .

. Q.

QV.

5.34 . Q V . . . 5.72 . . Q V . . . 6.19 . . Q V . .

•

.

.

.

.

.

.

.

.

.

.

•

.

4.83 .

5.05 .

6.74 .

7.37 .

8.08 .

16.000

16.017

16.033

16.050

16.067

16.083

16.100

16.117

0.9321

0.9390

0.9464

0.9543

0.9628

0.9721

0.9822

0.9934

have
D PEAK FLOW RATE:
· · · · ·
v .
V .
V .
V .
V .
V .
V .
· · · ·
V .
· · · · ·
· · · · ·
· · · · ·
V .
V .
v .
V .
V .
V .
V .
V .
V .
v . . V .
v .
v .
v .
V .
V .
V .
v .
V .
V .
V .
v . . V .
· · · · · ·
v .
v .
v .
v
v .
3

70%	210.0	
80%	180.0	
90%	140.0	

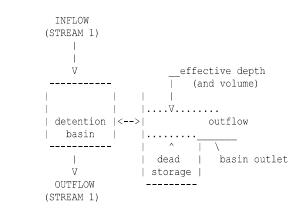
	TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 3.51
F L O O D R O U T I N G A N A L Y S I S USING COUNTY HYDROLOGY MANUAL OF ORANGE(1986) (c) Copyright 1989-2014 Advanced Engineering Software (aes) Ver. 21.0 Release Date: 06/01/2014 License ID 1419 Analysis prepared by:	

OAK GROVE DEVELOPMENT * AREAS A 25-YEAR HC PROPOSED CONDITION * SMALL AREA HYDROGRAPH MODEL - JULY 2017 *	
FILE NAME: OAKA25.DAT TIME/DATE OF STUDY: 20:49 08/15/2017	
The Small Area Unit Hydrograph Procedures in Section J of the Hydrology Manual provides estimates of runoff hydrograph and runoff volume for watersheds whose time of concentration is less than 25 minutes. The PROGRAM User should check the applicability of using the small area unit hydrograph procedures, and follow the guidelines in Sections J and K.5 in complex watershed modeling.	
FLOW PROCESS FROM NODE 1.00 TO NODE 5.00 IS CODE = 1.2	
>>>>SUBAREA RUNOFF (SMALL AREA UNIT-HYDROGRAPH ANALYSIS) <<<<	
(SMALL AREA UNIT-HYDROGRAPH ADDED TO STREAM #1)	
RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90 TOTAL CATCHMENT AREA(ACRES) = 15.44 SOIL-LOSS RATE, Fm,(INCH/HR) = 0.295 LOW LOSS FRACTION = 0.671 TIME OF CONCENTRATION(MIN.) = 20.34	
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED: RETURN FREQUENCY(YEARS) = 25 5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.40	
30-MINUTE POINT RAINFALL VALUE (INCHES) =0.871-HOURPOINT RAINFALL VALUE (INCHES) =1.153-HOURPOINT RAINFALL VALUE (INCHES) =1.946-HOURPOINT RAINFALL VALUE (INCHES) =2.7124-HOURPOINT RAINFALL VALUE (INCHES) =4.49	
TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = 2.26	

VOLUME (ACRE-FEET) = 3.51

HYDROGRAPH IN ONE-MINUTE UNIT INTERVALS(CFS) (Notes: Time indicated is at END of Each Unit Intervals. Peak 5-minute rainfall intensity is modeled as a constant value for entire 5-minute period.)

TIME (HRS)	VOLUME (AF)	Q(CFS) ().	6.5	13.0	19.5	26.0
15.800	0.9052	4.25		Q.	v .	•	
15.817	0.9113	4.40	•	Q.	v.		
15.833	0.9175	4.55	•	Q.	v.	•	•
15.850	0.9240	4.69	•	Q.	v.	•	•
15.867	0.9306	4.84	•	Q.	v.	•	•
15.883	0.9375	4.99	•	Q.	v.		
15.900	0.9446	5.13	•	Q.	v.	•	
15.917	0.9519	5.28	•	Q.	v.	•	
15.933	0.9593	5.42	•	Q.	v.	•	
15.950	0.9670	5.57	•	Q.	v.		
15.967	0.9749	5.72		Q.	ν.		
15.983	0.9829	5.86		Q.	v.		
16.000	0.9912	6.01		Q.	v .		
16.017	1.0003	6.57		Q	ν.	•	
16.033	1.0107	7.55		.Q	ν.		
16.050	1.0224	8.53		. Q	ν.	•	
16.067	1.0355	9.52		. (QV.		
16.083	1.0500	10.50		•	QV.		
16.100	1.0658	11.48			QV .		
16.117	1.0830	12.46			۰ Q.		
16.133	1.1015	13.44		•	νõ		
16.150	1.1213	14.42			v. Q		
16.167	1.1426	15.40			ν̈́Q		
16.183	1.1651	16.38			v	ο.	
16.200	1.1890	17.36			.V	õ.	
16.217	1.2143	18.34			.V	~ o .	
16.233	1.2409	19.32			.V	0.	
16.250	1.2689	20.30			• V	.Q	
16.267	1.2982	21.28	÷		. v	. 0	
16.283	1.3289	22.27			• · · · · · · · · · · · · · · · · · · ·	· • • Q	
16.300	1.3609	23.25					o .
16.317	1.3943	24.23		•			ΣQ.
16.333	1.4290	25.21	•	•	•	v .	°.
16.350	1.4648	26.03	•	•	•	v .	ų. Q
16.367	1.4989	24.71	•	•	•	v .	Q.
16.383	1.5313	23.57	·	•	•	v.	ο [×] .
16.400	1.5623	22.43	•	•	•	v . o	-
16.417	1.5916	22.45	•	•	•	V.Q	•
16.433	1.6193	21.30	·	•	•	V Q V Q	•
16.455	1.6455	19.02	•	•	•	V Q Q.	•
16.450	1.6702	19.02	·	•	•	Q. Q.V.	•
16.483	1.6932	16.74	•	•	•	-	•
			•	•	•	Q V. V	•
16.500	1.7147	15.60	•	•	· Q		•
16.517	1.7346	14.46	•	•	. Q	V	•
16.533	1.7530	13.33	•	•	Q	V	•


16.550	1.7698	12.19				Q.	.V	•
16.567	1.7850	11.05			•	Q.	.V	
16.583	1.7987	9.91				Q.	.V	
16.600	1.8107	8.77			. Q		.V	
16.617	1.8213	7.63			.Q		. V	
16.633	1.8302	6.49			Q.		. V	
16.650	1.8376	5.36			Q.		. V	
16.667	1.8434	4.22		Q		•	. V	
16.683	1.8477	3.13		Q			. V	
16.700	1.8516	2.83		Q			. V	
16.717	1.8554	2.77	•	Q	•	•	. V	
16.733	1.8591	2.71		Q			. V	
16.750	1.8628	2.65		Q			. V	
16.767	1.8663	2.59		Q			. V	
16.783	1.8698	2.53		Q		•	. V	
16.800	1.8732	2.47		Q			. V	

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated Peak Flow Rate	Duration (minutes)
=======================================	========
0%	1009.0
10%	375.0
20%	225.0
30%	170.0
40%	150.0
50%	125.0
60%	95.0
70%	75.0
80%	50.0
90%	25.0

>>>>FLOW-THROUGH DETENTION BASIN ROUTING MODEL APPLIED TO STREAM #1<<<<<

3 -

ROUTE RUNOFF HYDROGRAPH FROM STREAM NUMBER 1 THROUGH A FLOW-THROUGH DETENTION BASIN	
SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS:	
SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS:	
DEAD STORAGE(AF) = 0.000	
SPECIFIED DEAD STORAGE(AF) FILLED = 0.000	
SPECIFIED EFFECTIVE VOLUME(AF) FILLED ABOVE OUTLET = 0	.000
DETENTION BASIN CONSTANT LOSS RATE(CFS) = 0.00	

BASIN DEPTH VERSUS OUTFLOW AND STORAGE INFORMATION:

INTERVAL	DEPTH	OUTFLOW	STORAGE
NUMBER	(FT)	(CFS)	(AF)
1	0.00	0.00	0.000
2	1.00	11.03	0.180
3	2.00	15.60	0.410
4	3.00	19.10	0.690

MODIFIED-PULS BASIN ROUTING MODEL RESULTS (1-MINUTE COMPUTATION INTERVALS): (Note: Computed EFFECTIVE DEPTH and VOLUME are estimated at the clock time; MEAN OUTFLOW is the average value during the unit interval.)

CLOCK TIME (HRS)	DEAD-STORAGE FILLED(AF)	INFLOW (CFS)	LOSS (CFS)	EFFECTIVE DEPTH(FT)	MEAN OUTFLOW (CFS)	EFFECTIVE VOLUME (AF)
15.817	0.000	4.40	0.00	0.30	3.2	0.054
15.833	0.000	4.55	0.00	0.31	3.3	0.055
15.850	0.000	4.69	0.00	0.32	3.4	0.057
15.867	0.000	4.84	0.00	0.33	3.5	0.059
15.883	0.000	4.99	0.00	0.34	3.7	0.061
15.900	0.000	5.13	0.00	0.35	3.8	0.062
15.917	0.000	5.28	0.00	0.36	3.9	0.064
15.933	0.000	5.42	0.00	0.37	4.0	0.066
15.950	0.000	5.57	0.00	0.38	4.1	0.068
15.967	0.000	5.72	0.00	0.39	4.2	0.070
15.983	0.000	5.86	0.00	0.40	4.4	0.072
16.000	0.000	6.01	0.00	0.41	4.5	0.074
16.017	0.000	6.57	0.00	0.43	4.6	0.077
16.033	0.000	7.55	0.00	0.45	4.8	0.081
16.050	0.000	8.53	0.00	0.48	5.1	0.086
16.067	0.000	9.52	0.00	0.51	5.4	0.091
16.083	0.000	10.50	0.00	0.54	5.8	0.098
16.100	0.000	11.48	0.00	0.58	6.2	0.105
16.117	0.000	12.46	0.00	0.63	6.7	0.113
16.133	0.000	13.44	0.00	0.68	7.2	0.122
16.150	0.000	14.42	0.00	0.73	7.7	0.131
16.167	0.000	15.40	0.00	0.78	8.3	0.141
16.183	0.000	16.38	0.00	0.84	8.9	0.151
16.200	0.000	17.36	0.00	0.90	9.6	0.162
16.217	0.000	18.34	0.00	0.96	10.2	0.173
16.233	0.000	19.32	0.00	1.02	10.8	0.184
16.250	0.000	20.30	0.00	1.07	11.2	0.197
16.267	0.000	21.28	0.00	1.13	11.5	0.210

16.283	0.000	22.27	0.00	1.19	11.8	0.225
16.300	0.000	23.25	0.00	1.26	12.1	0.240
16.317	0.000	24.23	0.00	1.33	12.4	0.256
16.333	0.000	25.21	0.00	1.41	12.7	0.274
16.350	0.000	26.03	0.00	1.48	13.1	0.292
16.367	0.000	24.71	0.00	1.55	13.4	0.307
16.383			0.00			
	0.000	23.57		1.61	13.7	0.321
16.400	0.000	22.43	0.00	1.66		0.332
16.417	0.000	21.30	0.00	1.71	14.2	0.342
16.433	0.000	20.16	0.00	1.74	14.3	0.350
16.450	0.000	19.02	0.00	1.77	14.5	0.357
16.467	0.000	17.88	0.00	1.79	14.6	0.361
16.483	0.000	16.74	0.00	1.80	14.7	0.364
16.500	0.000	15.60	0.00	1.81	14.7	0.365
16.517	0.000	14.46	0.00	1.80	14.7	0.365
16.533	0.000	13.33	0.00	1.80	14.7	0.363
16.550	0.000	12.19	0.00	1.78	14.6	0.360
16.567	0.000	11.05	0.00	1.76	14.6	0.355
16.583	0.000	9.91	0.00	1.73	14.4	0.349
16.600	0.000	8.77	0.00	1.70	14.3	0.341
16.617		7.63	0.00	1.66	14.1	0.332
	0.000					
16.633	0.000	6.49	0.00	1.62	13.9	0.322
16.650	0.000	5.36	0.00	1.57	13.7	0.310
16.667	0.000	4.22	0.00	1.51	13.5	0.297
16.683	0.000	3.13	0.00	1.45	13.2	0.284
16.700	0.000	2.83	0.00	1.39	12.9	0.270
16.717	0.000	2.77	0.00	1.33	12.7	0.256
16.733	0.000	2.71	0.00	1.27	12.4	0.243
16.750	0.000	2.65	0.00	1.22	12.1	0.229
16.767	0.000	2.59	0.00	1.16	11.9	0.217
16.783	0.000	2.53	0.00	1.10	11.6	0.204
16.800		2.47		1.05	11.4	
PROCESS SUMMARY OF S	TORAGE					
INFLOW VOLUME =		ΔF				
BASIN STORAGE =			0 00	0 AF INITI		וחס
			0.00	O AL INII		ושטו
OUTFLOW VOLUME =						
LOSS VOLUME =	0.000	Ar				
* * * * * * * * * * * * * * * * * * * *						******
FLOW PROCESS FROM NO			DE 6.	00 IS CODE	c = 4	
>>>>>MODEL PIPEFLOW	ROUTING O	F STREAM #	\$1<<<<<			
MODEL PIPEFLO	W ROUTING	OF STREAM	A 1 WHERE			
STORAGE EFFEC				PTPE FLOW	ā	
VELOCITIES AR				•		
EACH UNIT INT						
OF (.82)(DIAM						
UNIT INTERVAL		OCITY COME	PUTED USIN	IG DN UP TO)	
(0.938)(DIAME	TER):					
PIPELENGTH (FT) = 1	42.00	MANNINGS	FACTOR = (0.013	
UPSTREAM ELEV	ATION(FT)	= 838	3.00			

DOWNS	STREAM	ELEVATI	EON (B	FT) =	836.00
PIPE	DIAMET	ER(FT)	=	2.00	

NORMAL DEPTH VELOCITY PIPE ROUTING RESULTS:

TIME (HRS)	INFLOW (CFS)	VELOCITY (FPS)	OUTFLOW (CFS)	UPSTREAM PONDING (AF)
15.800	3.13	5.63	3.11	0.000
15.817	3.23	5.68	3.20	0.000
15.833	3.33	5.73	3.30	0.000
15.850	3.43	5.79	3.41	0.000
15.867	3.54	5.85	3.51	0.000
15.883	3.65	5.91	3.62	0.000
15.900	3.77	5.97	3.74	0.000
15.917	3.88	6.03	3.85	0.000
15.933	4.00	6.10	3.97	0.000
15.950	4.12	6.15	4.09	0.000
15.967	4.25	6.20	4.21	0.000
15.983	4.37	6.25	4.34	0.000
16.000	4.50	6.31	4.46	0.000
16.017	4.64	6.37	4.61	0.000
16.033	4.84	6.45	4.79	0.000
16.050	5.10	6.55	5.03	0.000
16.067	5.42	6.68	5.34	0.000
16.083	5.79	6.80	5.69	0.000
16.100	6.21	6.94	6.11	0.000
16.117	6.68	7.10	6.57	0.000
16.133	7.18	7.25	7.07	0.000
16.150	7.73	7.42	7.61	0.000
16.167	8.31	7.57	8.18	0.000
16.183	8.93	7.70	8.78	0.000
16.200	9.57	7.83	9.42	0.000
16.217	10.24	7.97	10.09	0.000
16.233	10.85	8.09	10.72	0.000
16.250	11.24	8.16	11.15	0.000
16.267 16.283	11.50 11.78	8.20 8.24	11.44 11.71	0.000
16.283	11.78	8.24 8.29	12.01	0.000
16.317	12.07	8.35	12.01	0.000 0.000
16.333	12.39	8.41	12.52	0.000
16.350	13.07	8.48	13.00	0.000
16.367	13.40	8.54	13.34	0.000
16.383	13.69	8.59	13.63	0.000
16.400	13.94	8.63	13.89	0.000
16.417	14.16	8.66	14.11	0.000
16.433	14.33	8.69	14.30	0.000
16.450	14.48	8.71	14.45	0.000
16.467	14.58	8.73	14.56	0.000
16.483	14.66	8.74	14.64	0.000
16.500	14.70	8.75	14.69	0.000
16.517	14.71	8.75	14.70	0.000
16.533	14.68	8.75	14.69	0.000
16.550	14.63	8.74	14.64	0.000
16.567	14.55	8.73	14.57	0.000
16.583	14.44	8.71	14.46	0.000
16.600	14.30	8.69	14.33	0.000

16.617	14.14	8.66	14.17	0.000	
16.633	13.95	8.63	13.99	0.000	
16.650	13.73	8.59	13.78	0.000	
16.667	13.49	8.56	13.54	0.000	
16.683	13.22	8.51	13.28	0.000	
16.700	12.95	8.46	13.00	0.000	
	12.67			0.000	
16.733			12.46	0.000	
16.750	12.41 12.14	8.35 8.30	12.20	0.000	
16.767				0.000	
16.783	11.89 11.63	8.26 8.22	11.69	0.000	
			11.44		
10.000	11.00	0.10	11.11	0.000	
* * * * * * * * * * * * * * * * * * * *					*****
FLOW PROCESS FROM					
>>>>SUBAREA RUNC)FF (SMALL	AREA UNIT-	-HYDROGRAPH	ANALYSIS) <<<<<	
(SMALL AREA UNIT-	HYDROGRAPH	H ADDED TO	STREAM #2)		
RATIONAL METHOI) CALTERATI	ON COFFET	TENT = 0.00)	
TOTAL CATCHMENT				,	
SOIL-LOSS RATE,			278		
LOW LOSS FRACTI					
TIME OF CONCENT	•	,			
SMALL AREA PEAF	~				
ORANGE COUNTY '	'VALLEY" RA	AINFALL VAI	LUES ARE USE	ID:	
RETURN FREQUENC	CY(YEARS) =	= 25			
5-MINUTE POI	NT RAINFAI	L VALUE(IN	NCHES) = 0.	.40	
30-MINUTE POI	INT RAINFAI	L VALUE (IN	VCHES) = 0.	.87	
1-HOUR POI	INT RAINFAI	L VALUE (IN	NCHES) = 1.	15	
3-HOUR POI					
6-HOUR POI	NT RAINFAI	L VALUE (T)	VCHES) = 2	.71	
24-HOUR POI					
24-11001 101	.NI KAINFAI	IL VALUE (II	(CIILD) - 4.	.49	
				1 10	
TOTAL CATCHMENT					
TOTAL CATCHMENT	SOIL-LOSS	5 VOLUME (AC	CRE-FEET) =	1.69	

24-HOUR STORM RUNOFF HYDROGRAPH

HYDROGRAPH IN ONE-MINUTE UNIT INTERVALS(CFS) (Notes: Time indicated is at END of Each Unit Intervals. Peak 5-minute rainfall intensity is modeled as a constant value for entire 5-minute period.)

15.800 15.817 15.833 15.850 15.867 15.883	0.5033 0.5083 0.5135 0.5190 0.5248	3.39 3.60 3.80 4.01	•	ç Q		ν.	•	 -
15.833 15.850 15.867 15.883	0.5135 0.5190 0.5248	3.80		C				
15.850 15.867 15.883	0.5190 0.5248				2.	v.	•	
15.867 15.883	0.5248	4.01	•		Q.	v.	•	•
15.883			·		Q.	ν.	•	•
		4.22	•		Q.	v.	•	•
1 0 0 0	0.5309	4.43	•		Q.	ν.	•	•
15.900	0.5373	4.64	•		Q.	ν.	•	•
15.917	0.5440	4.85	•		Q.	ν.	•	•
15.933	0.5510	5.06	•		Q.	ν.	•	•
15.950	0.5582	5.27			Q	V.	•	•
15.967	0.5658	5.47			Q	V.		•
15.983	0.5736	5.68			.Q	V.	•	
16.000	0.5817	5.89			.Q	V.	•	•
16.017	0.5910	6.74			. Q	V		•
16.033	0.6023	8.24				Q V		
16.050	0.6158	9.73				Q.V		•
16.067	0.6312	11.22				٠Q		
16.083	0.6487	12.72				. V Q		
16.100	0.6683	14.21				. V	Q.	
16.117	0.6899	15.70				. V	Q	
16.133	0.7136	17.20				. V		
16.150	0.7394	18.69				•	v .	ç.
16.167	0.7678	20.65					v .	Q
16.183	0.7945	19.38					v.	Q.
16.200	0.8187	17.53					v. o	~ .
16.217	0.8403	15.69					νQ	
16.233	0.8593	13.85					Q V.	
16.250	0.8759	12.01				. Q	~v.	
16.267	0.8899	10.16				Q. ~	V	
16.283	0.9013	8.32				ç².	V	
16.300	0.9103	6.48			. Q	~ .	.V	
16.317	0.9166	4.63			Q. ~		.V	
16.333	0.9207	2.92		0			.V	
16.350	0.9241	2.49		Q			.V	
16.367	0.9274	2.40		õ			.V	
16.383	0.9306	2.31	÷	Q			.v	•
16.400	0.9336	2.22	÷	Ž			.v	
16.417	0.9366	2.12		Q		-	. V	
16.433	0.9394	2.03	:	Q	•	•	. v	•
16.450	0.9420	1.94	:	õ			. v	•
16.467	0.9446	1.85		Q	•	•	. v	•
16.483	0.9470	1.76	:	Õ	•	•	. v	•
16.500	0.9493	1.67	:	Q	•	•	. v	•
16.517	0.9515	1.61	:	õ	•	•	. v . v	•
16.533	0.9515	1.55	:		•	•	• • • V	•

16.550	0.9557	1.49	. Q	•	•	. V	•
16.567	0.9576	1.43	. Q	•	•	. V	
16.583	0.9595	1.37	. Q			. V	
16.600	0.9613	1.31	. Q			. V	
16.617	0.9630	1.24	. Q			. V	
16.633	0.9647	1.18	. Q			. V	
16.650	0.9662	1.12	. Q			. V	
16.667	0.9677	1.08	. Q			. V	
16.683	0.9692	1.06	. Q			. V	
16.700	0.9706	1.04	. Q			. V	
16.717	0.9720	1.02	.Q			. V	
16.733	0.9734	1.00	.Q			. V	
16.750	0.9747	0.98	.Q			. V	
16.767	0.9761	0.96	.Q			. V	
16.783	0.9774	0.95	.Q			. V	
16.800	0.9786	0.93	.Q		•	. V	
		·····					
TIME DUP	ATION(minute	S) OF PE	RCENTIL	ES OF EST	IMATED PEA	K FLOW RATE:	

an instantaneous time duration)

Percentile of Peak Flow	 Duration (minutes)
0%	1009.0
10%	220.0
20%	140.0
30%	90.0
40%	75.0
50%	60.0
60%	50.0
70%	35.0
80%	25.0
90%	15.0

* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * *	*****	**********
FLOW PROCESS FROM	NODE 6.	.00 TO NODE	6.00 IS CODE = 7
>>>>STREAM NUMBER	2 ADDED TO	STREAM NUMBER 1<	
	•		

******	*****	*****
FLOW PROCESS FROM NODE	6.00 TO NODE	6.00 IS CODE = 11
>>>>VIEW STREAM NUMBER	1 HYDROGRAPH<<<<<	

STREAM HYDROGRAPH IN ONE-MINUTE UNIT INTERVALS(CFS) (Notes: Time indicated is at END of Each Unit Intervals. Peak 5-minute rainfall intensity is modeled as a constant value for entire 5-minute period.)

				F	,	
TIME (HRS)	VOLUME (AF)	Q(CFS) 0.	7.5	15.0	22.5	30.0
15.800 15.817	1.3548 1.3642	6.50 . 6.80 .	Q. Q.	V . V .		

15.833	1.3739	7.10		Q. V	
15.850	1.3842	7.42		Q. V	
15.867	1.3948	7.73		Q V	
15.883	1.4059	8.05		Q V	
15.900	1.4174	8.37			
15.917	1.4294	8.70		.0 V	
15.933	1.4419	9.03	·		
15.950	1.4547	9.36	•	· · · · · · · · · · · · · · · · · · ·	
15.967	1.4681	9.69	·	-	
			•	$\cdot \circ \nabla \cdot \cdot \cdot \cdot \cdot$	
15.983	1.4819	10.02	·	$\cdot \circ \nabla \cdot \cdot \cdot \cdot \cdot$	
16.000	1.4962		•	. Q V	
16.017	1.5118	11.35	•	. QV	
16.033	1.5297		·	. Q	
16.050	1.5501	14.77	•	. VQ	
16.067	1.5729	16.56	•	. V.Q	
16.083	1.5983	18.41	•	. V.Q	
16.100	1.6262	20.32		. V. Q.	
16.117	1.6569	22.27		. V. Q	
16.133	1.6903	24.26		. VQ .	
16.150	1.7266	26.30		. V . Q .	
16.167	1.7663	28.83		. V . Q.	
16.183	1.8051	28.16		v . o .	
16.200	1.8422	26.95		v . o .	
16.217	1.8777			v . ç .	
16.233	1.9115			V . Q .	
16.250	1.9434	23.16		V Q .	
16.267	1.9732	21.60	•	<u> </u>	
16.283	2.0008	20.03	•	· · · · · · · ·	
16.300	2.0262	18.48	·	· · · · · · · · · · · · · · · · · · ·	
16.317	2.0202		•	· · · · · · · · · · · · · · · · · · ·	
16.333	2.0490	15.57	·	· · · · · · · · · · · · · · · · · · ·	
16.350	2.0924		·	-	
16.367	2.0924	15.73	·	~	
			•	-	
16.383	2.1360	15.94	·	Q V	
16.400	2.1582	16.11	·	Q V	
16.417	2.1806	16.24	·	Q V	
16.433	2.2031		•	Q V	
16.450	2.2256	16.39	·	Q V	
16.467	2.2482		•	Q V	
16.483	2.2708	16.40	·	Q V	
16.500	2.2933	16.36	·	Q V	
16.517	2.3158	16.31	·	Q V	
16.533	2.3382	16.24	•	Q V	
16.550	2.3604	16.13	•	Q V	
16.567	2.3824	15.99	•	Q V	
16.583	2.4042	15.83	•	Q V	
16.600	2.4258	15.64		. Q V.	
16.617	2.4470	15.42	•	. Q V	
16.633	2.4679	15.17		. Q V	
16.650	2.4884	14.90		. Q. V	
16.667	2.5086	14.62		. Q. V	
16.683	2.5283	14.33		. Q. V	
16.700	2.5476	14.04		. Q [°] . V	
16.717	2.5666	13.75		. õ. v	
16.733	2.5851	13.46		. Q [~] . V .	
16.750	2.6033	13.18		. Q. V.	
16.767	2.6210	12.91		. Q. V	
16.783	2.6384	12.64		. 2 . V .	
				~ · · ·	
				11	

TTME DUDATION (mi					
TIME DURATION (IIII)	nutes) OF PERCENI	FILES OF EST	IMATED PE	AK FLOW RATE:	
,	eak Flow Rate est				
an instantaneous	time duration)				
Percentile of Es	timated	Dura	ition		
Peak Flow Ra	te	(mir	utes)		
0%			19.0		
10%			5.0		
20%			5.0		
30%			5.0		
40%			5.0		
50%			0.0 0.0		
60% 70%			0.0 5.0		
70% 80%			0.0		
90%			20.0		
200		2	.0.0		
* * * * * * * * * * * * * * * * * *	*****	*********	*****	* * * * * * * * * * * * * * * *	*****
FLOW PROCESS FROM	NODE 6.00 7	TO NODE	6.00 IS (CODE = 3.2	
>>>>FLOW-THROUGH	DETENTION BASIN	ROUTING MOI	EL APPLIE) TO STREAM #1<	<<<<<
	INFLOW				
	(STREAM 1)				
	V	effe	ctive dept	th	
		(a	-)	
		(ā	ind volume)	
	 	 V	ind volume)	
	 detention <>	 V	ind volume)	
	 detention <> basin	 V	ind volume)	
		 V	ind volume)	
		 V 	ind volume		
	basin	 V 	outflow		
	basin V OUTFLOW	 V ^ dead	outflow		
	basin V	 V ^ dead	outflow		
	basin V OUTFLOW	 V ^ dead	outflow		
	basin V OUTFLOW	 V ^ dead	outflow		
	basin V OUTFLOW (STREAM 1)	 V ^ dead storage	outflow		
ROUTE RUNO	basin V OUTFLOW (STREAM 1) FF HYDROGRAPH FRO	 V ^ dead storage 	nd volume; outflow volume basin of MBER 1		
ROUTE RUNO THROUGH A	basin V OUTFLOW (STREAM 1) FF HYDROGRAPH FRO FLOW-THROUGH DETE	 V ^ dead storage DM STREAM NU	und volume; outflow basin o MBER 1		
ROUTE RUNO THROUGH A SPECIFIED 1	basin V OUTFLOW (STREAM 1) FF HYDROGRAPH FRO FLOW-THROUGH DETE BASIN CONDITIONS	 V ^ dead storage OM STREAM NU ENTION BASIN ARE AS FOLI	und volume; outflow basin o MBER 1		
ROUTE RUNO THROUGH A SPECIFIED 1 DEAD STO	basin V OUTFLOW (STREAM 1) FF HYDROGRAPH FRO FLOW-THROUGH DETH BASIN CONDITIONS RAGE (AF) = (0)	 V ^ dead storage OM STREAM NU ENTION BASIN ARE AS FOLI 0.000	und volume; outflow basin o basin o MBER 1 J. OWS:	butlet	
ROUTE RUNO THROUGH A SPECIFIED DEAD STO SPECIFIE	basin V OUTFLOW (STREAM 1) FF HYDROGRAPH FRO FLOW-THROUGH DETE BASIN CONDITIONS RAGE (AF) = (D DEAD STORAGE (AF)	<pre> V ^ dead storage </pre>	und volume; outflow basin o basin o MBER 1 J. OWS: 0.000	Dutlet	.000
ROUTE RUNO THROUGH A SPECIFIED DEAD STO SPECIFIE SPECIFIE	basin V OUTFLOW (STREAM 1) FF HYDROGRAPH FRO FLOW-THROUGH DETH BASIN CONDITIONS RAGE (AF) = (0)	<pre> V ^ dead storage </pre>	MBER 1 JOWS: 0.000	Dutlet D JTLET = 0.	.000
ROUTE RUNO THROUGH A SPECIFIED DEAD STO SPECIFIE SPECIFIE	basin V OUTFLOW (STREAM 1) FF HYDROGRAPH FRO FLOW-THROUGH DETT BASIN CONDITIONS RAGE(AF) = (D DEAD STORAGE(AH) D EFFECTIVE VOLUM	<pre> V ^ dead storage </pre>	MBER 1 JOWS: 0.000	Dutlet D JTLET = 0.	.000
ROUTE RUNO THROUGH A SPECIFIED DEAD STO SPECIFIE SPECIFIE	basin V OUTFLOW (STREAM 1) FF HYDROGRAPH FRO FLOW-THROUGH DETT BASIN CONDITIONS RAGE(AF) = (D DEAD STORAGE(AH) D EFFECTIVE VOLUM	<pre> V ^ dead storage </pre>	MBER 1 JOWS: 0.000	Dutlet D JTLET = 0.	.000
ROUTE RUNO THROUGH A SPECIFIED DEAD STO SPECIFIE SPECIFIE DETENTIO	basin V OUTFLOW (STREAM 1) FF HYDROGRAPH FRO FLOW-THROUGH DETT BASIN CONDITIONS RAGE(AF) = (D DEAD STORAGE(AH) D EFFECTIVE VOLUM	<pre> V ^ dead storage storage </pre>	MBER 1 Jows: 0.000 DABOVE OI CFS) = 0)) JTLET = 0. 0.00	.000
ROUTE RUNO THROUGH A SPECIFIED DEAD STO SPECIFIE SPECIFIE DETENTIO	basin V OUTFLOW (STREAM 1) FF HYDROGRAPH FRO FLOW-THROUGH DETH BASIN CONDITIONS RAGE (AF) = (D DEAD STORAGE (AH D D DEAD STORAGE (AH D D D D D D D D D D D D D D D D D D D	M STREAM NU dead storage storage storage ARE AS FOLL D.000 F) FILLED = LOSS RATE (C AND STORAGE	MBER 1 Jows: 0.000 DABOVE OI CFS) = 0)) JTLET = 0. 0.00	.000
ROUTE RUNO THROUGH A SPECIFIED DEAD STO SPECIFIE SPECIFIE DETENTIO BASIN DEPT	basin V OUTFLOW (STREAM 1) FF HYDROGRAPH FRO FLOW-THROUGH DETH BASIN CONDITIONS RAGE (AF) = (D DEAD STORAGE (AH D EFFECTIVE VOLUN N BASIN CONSTANT H VERSUS OUTFLOW DEPTH OUT	M STREAM NU dead storage storage storage ARE AS FOLL D.000 F) FILLED = LOSS RATE (C AND STORAGE	MBER 1)) JTLET = 0. 0.00	.000

2.6555 12.37 . Q . V .

16.800

1	0.00	0.00	0.000
2	1.00	15.88	0.260
3	2.00	22.46	0.590
4	3.00	27.51	0.970

MODIFIED-PULS BASIN ROUTING MODEL RESULTS (1-MINUTE COMPUTATION INTERVALS): (Note: Computed EFFECTIVE DEPTH and VOLUME are estimated at the clock time; MEAN OUTFLOW is the average value during the unit interval.)

CLOCK TIME (HRS)	DEAD-STORAGE FILLED(AF)	INFLOW (CFS)	LOSS (CFS)	EFFECTIVE DEPTH(FT)	MEAN OUTFLOW (CFS)	EFFECTIVE VOLUME (AF)
15.817	0.000	6.80	0.00	0.30	4.7	0.079
15.833	0.000	7.10	0.00	0.32	4.9	0.082
15.850	0.000	7.42	0.00	0.33	5.1	0.085
15.867	0.000	7.73	0.00	0.34	5.3	0.089
15.883	0.000	8.05	0.00	0.35	5.5	0.092
15.900	0.000	8.37	0.00	0.37	5.7	0.096
15.917	0.000	8.70	0.00	0.38	6.0	0.100
15.933	0.000	9.03	0.00	0.40	6.2	0.103
15.950	0.000	9.36	0.00	0.41	6.4	0.107
15.967	0.000	9.69	0.00	0.43	6.7	0.112
15.983	0.000	10.02	0.00	0.45	6.9	0.116
16.000	0.000	10.36	0.00 0.00	0.46 0.48	7.2	0.120
16.017 16.033	0.000 0.000	11.35 13.03	0.00	0.40	7.5 7.9	0.125 0.133
16.050	0.000	14.77	0.00	0.51	8.4	0.141
16.067	0.000	16.56	0.00	0.54	9.0	0.152
16.083	0.000	18.41	0.00	0.63	9.6	0.164
16.100	0.000	20.32	0.00	0.68	10.4	0.178
16.117	0.000	22.27	0.00	0.74	11.3	0.193
16.133	0.000	24.26	0.00	0.80	12.3	0.209
16.150	0.000	26.30	0.00	0.87	13.3	0.227
16.167	0.000	28.83	0.00	0.95	14.5	0.247
16.183	0.000	28.16	0.00	1.01	15.5	0.264
16.200	0.000	26.95	0.00	1.06	16.1	0.279
16.217	0.000	25.78	0.00	1.10	16.4	0.292
16.233	0.000	24.57	0.00	1.13	16.6	0.303
16.250	0.000	23.16	0.00	1.16	16.8	0.312
16.267	0.000	21.60	0.00	1.18	17.0	0.318
16.283	0.000	20.03	0.00	1.19	17.1	0.322
16.300	0.000	18.48	0.00	1.19	17.1	0.324
16.317	0.000	16.96	0.00	1.19	17.2	0.324
16.333	0.000	15.57	0.00	1.19	17.1	0.322
16.350 16.367	0.000 0.000	15.49 15.73	0.00 0.00	1.18 1.17	17.1 17.0	0.319 0.318
16.383	0.000	15.94	0.00	1.17	17.0	0.316
16.400	0.000	15.94	0.00	1.17	17.0	0.315
16.400	0.000	16.24	0.00	1.17	17.0	0.314
16.433	0.000	16.33	0.00	1.10	16.9	0.313
16.450	0.000	16.39	0.00	1.10	16.9	0.312
16.467	0.000	16.41	0.00	1.16	16.9	0.312
16.483	0.000	16.40	0.00	1.15	16.9	0.311
16.500	0.000	16.36	0.00	1.15	16.9	0.310
16.517	0.000	16.31	0.00	1.15	16.9	0.309

	6.533	0.000					0.309
	6.550	0.000	16.13	0.00	1.14		
	6.567	0.000	15.99	0.00	1.14		
	6.583	0.000	15.83	0.00	1.14		
	6.600	0.000	15.64 15.42	0.00	1.13		
	6.617	0.000	15.42	0.00	1.13		
1	6.633	0.000	15.17 14.90	0.00	1.12	16.7	0.300
1	6.650	0.000	14.90	0.00	1.11	16.7 16.6 16.6	0.297
1	6.667	0.000	14.62 14.33	0.00	1.10	16.6	
1	6.683	0.000	14.33	0.00	1.10	16.5	0.292
1	6.700	0.000	14.04	0.00	1.09	16.5	
1	6.717	0.000	13.75 13.46	0.00	1.07	16.4 16.3	0.284
1	6.733	0.000	13.46	0.00	1.06	16.3	0.281
1	6.750	0.000	13.18 12.91	0.00	1.05	16.2	0.276
1	6.767	0.000	12.91	0.00	1.04	16.2 16.2	0.272
1	6.783	0.000	12.64	0.00	1.02	16.1	0.267
1	6.783 6.800	0.000	12.37	0.00	1.01	16.0	0.262
FLOW PROC	************ ESS FROM NO STREAM NUM STREAM HYD STREAM HYD tes: Time i Peak 5	DE 6 BER 1 HYD ====== ROGRAPH I ndicated	.00 TO NOI ROGRAPH< 	DE 6. <<< NUTE UNIT	00 IS COE 	DE = 11	
	a cons			ire 5-minu			
TIME (HRS)	VOLUME (AF)	Q(CFS)	0.	5.0	10.0	15.0	20.0
15.800	1.2785	4.58		Q. V Q. V			
15.817		4.75	•	Q. V	•	•	
15.833	1.2918	4.92	•	Q. V			•
15.850	1.2989			Q. V Q V Q V	•	•	•
15.867	1.3062	5.31		Q V			
15.883	1.3138	5.52		.Q V	•		
15.900	1.3217			.Q V .Q V	•		
15.917	1.3299	5.96		.0 V			
15.933		6.20		.Q V .Q V		•	•
1 5 0 5 0	1 0 4 7 0	6.44		• Q V	•	•	-
15.967	1.34/3 1.3565 1.3661	6 69		• • • •	•	•	•
15.983	1.3661	6.69 6.94	•	• • • •	•	•	•
16.000	1.3001	0.94		• 2 •	•	•	•

7.21 .

7.50 .

7.88 .

8.36 .

8.95 .

10.43 .

11.31 .

9.64 .

16.000

16.017

16.033

16.050

16.067

16.083

16.100

16.117

1.3760

1.3863

1.3972

1.4087

1.4210

1.4343

1.4487

1.4643

QV .

VQ .

V Q.

v . Q

V Q

. QV.

. Q .

.

.

.

.

•

.

QV .

.

.

.

.

.

•

.

.

.

.

.

.

.

.

•

.

16.133	1.4812	12.27 .		v. Q.		17.100	2.7051	9.20		ç.	.V	
			•		· ·							•
16.150	1.4995	13.32 .	•	V. Q.	•	17.117	2.7173	8.85	• •	ç.	.V	•
16.167	1.5194	14.47 .	•	V. Q.	•	17.133	2.7290	8.50		Q.	.V	•
16.183	1.5408	15.52 .		VQ		17.150	2.7402	8.17		Q.	.V	
16.200	1.5630	16.11 .		V Q		17.167	2.7510	7.86		Q.	. V	
16.217	1.5856	16.39 .		V Q		17.183	2.7614	7.55		Q.	. V	
16.233	1.6085		•	_	·	17.200	2.7714	7.26	• •		. v	•
			•		•				• •	Q .		•
16.250	1.6317	16.82 .	•	V Q	· ·	17.217	2.7811	6.98		Q.	. V	•
16.267	1.6551	16.98 .		V Q		17.233	2.7903	6.71 .		Q.	. V	
16.283	1.6786	17.08 .		V Q		17.250	2.7992	6.45 .		Q.	. V	
16.300	1.7022	17.14 .		V Q		17.267	2.8077	6.21			. V	
16.317	1.7258	17.15 .	•	V . Q	· ·	17.283	2.8160	5.97	Q		. v	•
			•	~								•
16.333	1.7494	17.13 .	•	Q . V	•	17.300	2.8239	5.75	~		. V	•
16.350	1.7730	17.09 .	•	V . Q		17.317	2.8315	5.54	Q	•	. V	•
16.367	1.7964	17.05 .		V . Q		17.333	2.8388	5.33	. Q		. V	
16.383	1.8199	17.01 .		.v . 0		17.350	2.8459	5.14	. 0		. V	
16.400	1.8433	16.99 .		.V . Q		17.367	2.8528	4.96			. V	
16.417		16.97 .	•	~	·	17.383	2.8594			•		•
	1.8666		•		·				~	•	. V	·
16.433	1.8900	16.95 .	•	. V . Q	•	17.400	2.8657	4.62		•	. V	•
16.450	1.9133	16.93 .		.V. Q		17.417	2.8719	4.46			. V	•
16.467	1.9366	16.92 .		. V . Q		17.433	2.8778	4.31	. Q.		. V	
16.483	1.9599	16.90 .		. V . Õ		17.450	2.8836	4.17			. V	
16.500	1.9831	16.89 .	•	. V . Q		17.467	2.8891	4.04		•	. v	•
			•	-	· ·					•		•
16.517	2.0064	16.87 .	•	. V . Q	•	17.483	2.8945	3.91	. Q.	•	. V	•
16.533	2.0296	16.86 .	•	. V . Q	•	17.500	2.8997	3.79 .	. Q.	•	. V	•
16.550	2.0528	16.84 .		. V . Q		17.517	2.9048	3.68 .	. Q.		. V	
16.567	2.0760	16.82 .	_	. V . Q		17.533	2.9097	3.57	. 0.		. V	
16.583	2.0991	16.79 .	•	. V . Q	· ·	17.550	2.9145	3.47	~	•	. V	•
			•		•					•		•
16.600	2.1222	16.76 .	•	. V . Q	•	17.567	2.9191	3.37	~	•	• V	•
16.617	2.1452	16.73 .	•	. V . Q	•	17.583	2.9236	3.28	. Q.	•	. V	•
16.633	2.1682	16.69 .		. V . Q		17.600	2.9280	3.19 .	. Q.		. V	
16.650	2.1912	16.65 .		. V . Q		17.617	2.9323	3.11	. 0.		. V	
16.667	2.2140	16.60 .	•	. v . Q	· ·	17.633	2.9365	3.03		•	. v	•
			•						~	•		•
16.683	2.2368	16.54 .	•	. V . Q		17.650	2.9405	2.95		•	• V	•
16.700	2.2595	16.47 .	•	. V .Q	•	17.667	2.9445	2.88	. Q .	•	. V	•
16.717	2.2821	16.40 .		. V .Q		17.683	2.9484	2.82	. Q .		. V	•
16.733	2.3046	16.33 .		. V .Q		17.700	2.9522	2.76	. Q .		. V	
16.750	2.3270	16.25 .		. V.Q		17.717	2.9559	2.70	. õ		. V	
			•						-	•		•
16.767	2.3492	16.16 .	•	. V .Q	·	17.733	2.9595	2.64		•	• V	•
16.783	2.3713	16.07 .	•	. V .Q	•	17.750	2.9631	2.58	~	•	. V	•
16.800	2.3933	15.97 .		. V .Q		17.767	2.9666	2.53	. Q .		. V	
16.817	2.4151	15.81 .	-	. v .õ		17.783	2.9700	2.48	. Q [~] .		. V	
16.833	2.4365	15.54 .	•	. v.g		17.800	2.9734	2.44	. õ	•	. v	-
			•			17.000	2.0/04	2.11	• ¥ •	•	• v	•
16.850	2.4575	15.20 .	•	. V Q	·			· · · · · · · · · · · · · · · · · · ·				
16.867	2.4779	14.83 .	•	. VQ.	•						AK FLOW RATE:	
16.883	2.4978	14.45 .		. QV.		(Note: 1	00% of Peak	Flow Rate	estimate as	sumed to hav	re	
16.900	2.5171	14.05 .		. QV.		an insta	intaneous tir	me duration	n)			
16.917	2.5359	13.64 .	-	. Q V.								
			•		·	Domoort	lo of Eatim	atod		uration		
16.933	2.5542	13.22 .	•	. Q V.	·		le of Estima	aleu		uration		
16.950	2.5718	12.80 .	•	. Q V.	•		: Flow Rate			minutes)		
16.967	2.5888	12.38 .		. Q V		=======		====	=			
16.983	2.6053	11.96 .		. Q. V		1	0%			1069.0		
17.000	2.6212	11.54 .	-	. 0. V		1	10%			1069.0		
17.017			•	-	·	1	20%			595.0		
	2.6365	11.13 .	•	~	·	1						
17.033	2.6513	10.72 .	•	.Q V	•	1	30%			445.0		
17.050	2.6655	10.33 .	•	Q .V		1	40%			375.0		
17.067	2.6792	9.94 .		QV		1	50%			320.0		
17.083	2.6924	9.56 .		QV		1	60%			290.0		
1,000	2.3521		•	ו•••		1						
			- 15 -			1			4.0			
			- 10 -			1			- 16 -			

70%	255.0	
80%	225.0	
90%	200.0	

	TOTAL CATCHMENT SOIL-LOSS VOLUME (ACRE-FEET) = 2.72

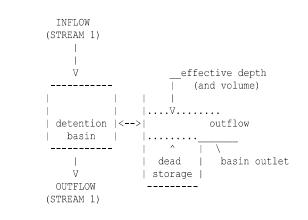
USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)	
(c) Copyright 1989-2014 Advanced Engineering Software (aes)	
Ver. 21.0 Release Date: 06/01/2014 License ID 1419	
Analysis prepared by:	
************************** DESCRIPTION OF STUDY ********************************	
OAK GROVE DEVELOPMENT *	
AREAS A 100-YEAR HC PROPOSED CONDITION *	
SMALL AREA HYDROGRAPH MODEL - JULY 2017 * ***********************************	
FILE NAME: OAKA100.DAT	
TIME/DATE OF STUDY: 20:47 08/15/2017	
The Small Area Unit Hydrograph Procedures in Section J	
of the Hydrology Manual provides estimates of runoff	
hydrograph and runoff volume for watersheds whose time of	
concentration is less than 25 minutes. The PROGRAM User	
should check the applicability of using the small area unit	
hydrograph procedures, and follow the guidelines in	
Sections J and K.5 in complex watershed modeling.	

FLOW PROCESS FROM NODE 1.00 TO NODE 5.00 IS CODE = 1.2	
>>>>SUBAREA RUNOFF (SMALL AREA UNIT-HYDROGRAPH ANALYSIS) <<<<<	
(SMALL AREA UNIT-HYDROGRAPH ADDED TO STREAM #1)	
RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90	
TOTAL CATCHMENT AREA(ACRES) = 15.44	
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.295	
LOW LOSS FRACTION = 0.340	
TIME OF CONCENTRATION(MIN.) = 19.49	
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA	
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED: RETURN FREQUENCY(YEARS) = 100	
5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.52	
30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.52	
1-HOUR POINT RAINFALL VALUE (INCHES) = 1.45	
3-HOUR POINT RAINFALL VALUE (INCHES) = 2.43	
6-HOUR POINT RAINFALL VALUE (INCHES) = 3.36	
24-HOUR POINT RAINFALL VALUE (INCHES) = 5.63	
TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = 4.53	

OSS VOLUME (ACRE-FEET) = 2.72

HYDROGRAPH IN ONE-MINUTE UNIT INTERVALS(CFS) (Notes: Time indicated is at END of Each Unit Intervals. Peak 5-minute rainfall intensity is modeled as a constant value for entire 5-minute period.)

TIME (HRS)	VOLUME (AF)	Q(CFS) 0.	8.7	17.5	26.2	34.9
15.800	2.2213	7.16 .	Q.	ν.		
15.817	2.2313	7.29 .	Q.	V.		
15.833	2.2415	7.42 .	Q.	V.		•
15.850	2.2520	7.56 .	Q.	V.		•
15.867	2.2625	7.69 .	ç.	V.		
15.883	2.2733	7.82 .	Q.	V		
15.900	2.2843	7.95 .	Q.	V		
15.917	2.2954	8.09 .	Q.	V		
15.933	2.3067	8.22 .	õ.	V		
15.950	2.3182	8.35 .	õ.	V		
15.967	2.3299	8.49 .	Q.	v	•	•
15.983	2.3418	8.62	Q.	v	•	•
16.000	2.3538	8.75	Q. Q	v	•	•
16.000	2.3669	9.49 .	Q	V	•	•
16.033	2.3818	10.83		.v	•	•
			· 2		•	•
16.050	2.3986	12.17 .	• Q	V.	•	•
16.067	2.4172	13.51 .	•	Q .V	•	•
16.083	2.4376	14.84 .	•	Q.V	•	•
16.100	2.4599	16.18 .	•	Q.V	•	•
16.117	2.4841	17.52 .	•	QV	•	•
16.133	2.5100	18.86 .	•	.QV	•	•
16.150	2.5379	20.20 .	•	. VQ	•	•
16.167	2.5675	21.54 .		. V Q		•
16.183	2.5991	22.88 .		. V	ç.	
16.200	2.6324	24.22 .		. V	Q.	
16.217	2.6676	25.56 .		. V	Q.	
16.233	2.7047	26.90 .		. V	Q	
16.250	2.7436	28.24 .		. V	′.Q	
16.267	2.7843	29.58 .		. V		
16.283	2.8269	30.92 .		. V	-	ο.
16.300	2.8713	32.26			v .	• • • •
16.317	2.9176	33.59 .	•		v .	۰ ۵
16.333	2.9657	34.92	•	•	v	ž · Q
16.350	3.0117	33.41 .	•	•	v . V .	ο.
16.367	3.0557	31.92 .	•	•	v. V.	0.
16.383	3.0976	30.42	•	•	v . v . o	~
			•	•		•
16.400	3.1374	28.93 .	•	•	~	•
16.417	3.1752	27.43 .	•	•	V .Q	•
16.433	3.2109	25.94 .	•	•	VQ.	•
16.450	3.2446	24.44 .	•	•	Q.	•
16.467	3.2762	22.95	•	•	QV.	٠
16.483	3.3058	21.46 .	•	. Q		•
16.500	3.3333	19.96 .	•	. Q	V.	•
16.517	3.3587	18.47 .		٠Q	V.	•
16.533	3.3821	16.97 .		Q.	V.	


16.550	3.4034	15.48	•		•	Q	•	V	•	
16.567	3.4227	13.98				Q	•	V		
16.583	3.4399	12.49				Q		V		
16.600	3.4550	10.99			. Q			V		
16.617	3.4681	9.50			Q			V		
16.633	3.4791	8.01			Q.			V		
16.650	3.4881	6.51		Q				V	•	
16.667	3.4960	5.75		Q				V		
16.683	3.5038	5.67		Q			•	V		
16.700	3.5115	5.59		Q				.V		
16.717	3.5191	5.51		Q			•	.V		
16.733	3.5266	5.43		Q				.V	•	
16.750	3.5340	5.35		Q			•	.V		
16.767	3.5412	5.26		Q				.V		
16.783	3.5484	5.18		Q				.V		
16.800	3.5554	5.10		Q				.V	•	

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated Peak Flow Rate	Duration (minutes)
=======================================	========
0%	1009.0
10%	905.0
20%	260.0
30%	175.0
40%	150.0
50%	125.0
60%	100.0
70%	75.0
80%	50.0
90%	25.0

>>>>FLOW-THROUGH DETENTION BASIN ROUTING MODEL APPLIED TO STREAM #1<<<<<

3 -

ROUTE RUNOFF HYDROGRAPH FROM STREAM NUMBER 1 THROUGH A FLOW-THROUGH DETENTION BASIN	
SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS:	
SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS:	
DEAD STORAGE(AF) = 0.000	
SPECIFIED DEAD STORAGE(AF) FILLED = 0.000	
SPECIFIED EFFECTIVE VOLUME(AF) FILLED ABOVE OUTLET =	0.000
DETENTION BASIN CONSTANT LOSS RATE(CFS) = 0.00	

BASIN DEPTH VERSUS OUTFLOW AND STORAGE INFORMATION:

INTERVAL	DEPTH	OUTFLOW	STORAGE
NUMBER	(FT)	(CFS)	(AF)
1	0.00	0.00	0.000
2	1.00	11.03	0.180
3	2.00	15.60	0.410
4	3.00	19.10	0.690

MODIFIED-PULS BASIN ROUTING MODEL RESULTS (1-MINUTE COMPUTATION INTERVALS): (Note: Computed EFFECTIVE DEPTH and VOLUME are estimated at the clock time; MEAN OUTFLOW is the average value during the unit interval.)

CLOCK TIME (HRS)	DEAD-STORAGE FILLED (AF)	INFLOW (CFS)	LOSS (CFS)	EFFECTIVE DEPTH(FT)	MEAN OUTFLOW (CFS)	EFFECTIVE VOLUME (AF)
15.817	0.000	7.29	0.00	0.57	6.2	0.102
15.833	0.000	7.42	0.00	0.58	6.3	0.104
15.850	0.000	7.56	0.00	0.58	6.4	0.105
15.867	0.000	7.69	0.00	0.59	6.5	0.107
15.883	0.000	7.82	0.00	0.60	6.6	0.109
15.900	0.000	7.95	0.00	0.61	6.7	0.110
15.917	0.000	8.09	0.00	0.62	6.8	0.112
15.933	0.000	8.22	0.00	0.63	6.9	0.114
15.950	0.000	8.35	0.00	0.64	7.0	0.116
15.967	0.000	8.49	0.00	0.65	7.1	0.117
15.983	0.000	8.62	0.00	0.66	7.3	0.119
16.000	0.000	8.75	0.00	0.67	7.4	0.121
16.017	0.000	9.49	0.00	0.69	7.5	0.124
16.033	0.000	10.83	0.00	0.71	7.7	0.128
16.050	0.000	12.17	0.00	0.74	8.0	0.134
16.067	0.000	13.51	0.00	0.78	8.4	0.141
16.083	0.000	14.84	0.00	0.83	8.9	0.149
16.100	0.000	16.18	0.00	0.88	9.4	0.158
16.117	0.000	17.52	0.00	0.94	10.0	0.169
16.133	0.000	18.86	0.00	1.00	10.7	0.180
16.150	0.000	20.20	0.00	1.05	11.2	0.193
16.167	0.000	21.54	0.00	1.11	11.4	0.206
16.183	0.000	22.88	0.00	1.18	11.7	0.222
16.200	0.000	24.22	0.00	1.25	12.0	0.239
16.217	0.000	25.56	0.00	1.33	12.4	0.257
16.233	0.000	26.90	0.00	1.42	12.7	0.276
16.250	0.000	28.24	0.00	1.51	13.1	0.297
16.267	0.000	29.58	0.00	1.60	13.6	0.319

16.283 16.300	0.000	30.92 32.26	0.00	1.71 1.81	14.0 14.5	0.342 0.367
16.317	0.000	33.59	0.00	1.92	15.0	0.392
16.333	0.000	34.92	0.00	2.03	15.5	0.419
16.350	0.000	33.41	0.00	2.12	15.9	0.443
16.367	0.000	31.92	0.00	2.20	16.2	0.465
16.383	0.000	30.42 28.93	0.00	2.27	16.4	0.484
16.400 16.417	0.000 0.000	28.93 27.43	0.00 0.00	2.33 2.38	16.6 16.8	0.501 0.516
16.433	0.000	25.94	0.00	2.30	17.0	0.528
16.450	0.000	24.44	0.00	2.46	17.1	0.538
16.467	0.000	22.95	0.00	2.49	17.3	0.546
16.483	0.000	21.46	0.00	2.51	17.3	0.552
16.500	0.000	19.96	0.00	2.52	17.4	0.555
16.517	0.000	18.47	0.00	2.52	17.4	0.557
16.533 16.550	0.000 0.000	16.97 15.48	0.00 0.00	2.52 2.51	17.4 17.4	0.556 0.553
16.550	0.000	13.98	0.00	2.51	17.4	0.535
16.583	0.000	12.49	0.00	2.30	17.3	0.542
16.600	0.000	10.99	0.00	2.44	17.2	0.534
16.617	0.000	9.50	0.00	2.40	17.1	0.523
16.633	0.000	8.01	0.00	2.36	16.9	0.511
16.650	0.000	6.51	0.00	2.31	16.8	0.497
16.667 16.683	0.000	5.75 5.67	0.00	2.26	16.6	0.482
16.700	0.000 0.000	5.59	0.00 0.00	2.20 2.15	16.4 16.2	0.467 0.452
16.717	0.000	5.51	0.00	2.10	16.0	0.438
16.733	0.000	5.43	0.00	2.05	15.9	0.424
16.750	0.000	5.35	0.00	2.00	15.7	0.409
16.767	0.000	5.26	0.00	1.94	15.4	0.395
16.783	0.000	5.18	0.00	1.88	15.2	0.382
16.800	0.000	5.10	0.00	1.82	14.9	0.368
PROCESS SUMMARY OF INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME =	STORAGE: 4.527 0.000 4.527	AF AF (WITH AF		0 AF INIT:		ED)
LOSS VOLUME =	0.000	AF				
**************************************	ODE 5	.00 TO NOI	DE 6.	00 IS CODE	E = 4	
>>>>>MODEL PIPEFLOW	ROUTING O	F STREAM ;	¥1<<<<<			
MODEL PIPEFL	OW ROUTING	OF STREAM	4 1 WHERE			
STORAGE EFFE						
VELOCITIES A						
EACH UNIT IN OF (.82)(DIA						
UNIT INTERVA						
(0.938) (DIAM		0011	0.210	1		
_						
PIPELENGTH (F				FACTOR = (0.013	
UPSTREAM ELE	VATION (FT)	= 838	5.00			
		6				

DOWNS	TREAM	ELEVATI	EON ((FT)	=	836.00
PIPE	DIAMET	ER(FT)	=	2.0	00	

NORMAL DEPTH VELOCITY PIPE ROUTING RESULTS:

TIME (HRS) 15.800	INFLOW (CFS) 6.12	VELOCITY (FPS) 6.91	OUTFLOW (CFS) 6.10	UPSTREAM PONDING(AF) 0.000
15.817	6.21	6.94	6.19	0.000
15.833	6.30	6.97	6.28	0.000
15.850	6.40	7.01	6.37	0.000
15.867 15.883	6.50 6.60	7.04 7.07	6.47 6.57	0.000 0.000
15.900	6.70	7.11	6.68	0.000
15.917	6.81	7.14	6.78	0.000
15.933	6.92	7.17	6.89	0.000
15.950	7.03	7.21	7.00	0.000
15.967	7.14	7.24	7.12	0.000
15.983	7.26	7.28	7.23	0.000
16.000	7.37	7.31	7.35	0.000
16.017 16.033	7.51 7.73	7.36 7.42	7.48 7.68	0.000 0.000
16.050	8.03	7.51	7.97	0.000
16.067	8.42	7.60	8.33	0.000
16.083	8.89	7.69	8.78	0.000
16.100	9.42	7.80	9.30	0.000
16.117	10.03	7.93	9.89	0.000
16.133	10.69	8.06	10.54	0.000
16.150	11.15	8.14	11.05	0.000
16.167 16.183	11.42 11.71	8.18 8.23	11.36 11.64	0.000 0.000
16.200	12.03	8.28	11.04	0.000
16.217	12.38	8.35	12.30	0.000
16.233	12.75	8.42	12.67	0.000
16.250	13.15	8.49	13.07	0.000
16.267	13.57	8.57	13.49	0.000
16.283	14.02	8.64	13.93	0.000
16.300	14.50	8.72	14.40	0.000
16.317 16.333	15.00 15.48	8.79 8.85	14.89 15.38	0.000 0.000
16.350	15.87	8.90	15.79	0.000
16.367	16.15	8.93	16.09	0.000
16.383	16.41	8.96	16.35	0.000
16.400	16.64	8.98	16.59	0.000
16.417	16.83	9.00	16.79	0.000
16.433	17.00	9.02	16.96	0.000
16.450	17.14	9.03	17.11	0.000
16.467 16.483	17.25 17.34	9.04 9.05	17.23 17.32	0.000 0.000
16.500	17.39	9.05	17.38	0.000
16.517	17.43	9.06	17.42	0.000
16.533	17.43	9.06	17.43	0.000
16.550	17.41	9.05	17.41	0.000
16.567	17.36	9.05	17.37	0.000
16.583	17.29	9.04	17.31	0.000
16.600	17.20	9.03	17.22	0.000

16.617	17.08	9.02	17.11	0.000	
16.633	16.94	9.01	16.97	0.000	
16.650	16.77 16.59	8.99	16.81	0.000	
16.667		8.98	16.63	0.000	
16.683	16.41 16.22	8.96	16.45	0.000	
16.700	16.22	8.94	16.26	0.000	
16.717	16.04	8.92	16.08	0.000	
16.733	15.86	8.90	15.90	0.000	
16.750	15.68		15.72	0.000	
16.767	15.45 15.17	8.85	15.50 15.23	0.000	
16.783	15.17	8.81	15.23	0.000	
16.800	14.90	8.78	14.96	0.000	
**************************************	1 NODE DFF (SMALL	11.00 TO I	NODE 13.	00 IS CODE = 1	.2
(SMALL AREA UNIT-	HYDROGRAPH	ADDED TO	STREAM #2)		
RATIONAL METHOI	CALTERATT	ON COFFEI	TENT = 0 90	1	
TOTAL CATCHMENT					
SOIL-LOSS RATE,		,			
LOW LOSS FRACTI			270		
			1		
TIME OF CONCENT					
SMALL AREA PEAK					
ORANGE COUNTY '			LUES ARE USE	יD:	
RETURN FREQUENC				F 0	
5-MINUTE POI					
30-MINUTE POI					
1-HOUR POI					
3-HOUR POI					
6-HOUR POI					
24-HOUR POI	INT RAINFAL	L VALUE(II	NCHES) = 5.	63	
TOTAL CATCHMENT	r runoff	VOLUME (A	CRE-FEET) =	2.24	
TOTAL CATCHMENT	SOIL-LOSS	VOLUME (A	CRE-FEET) =	1.35	

- 7 -

HYDROGRAPH IN ONE-MINUTE UNIT INTERVALS(CFS) (Notes: Time indicated is at END of Each Unit Intervals. Peak 5-minute rainfall intensity is modeled as a constant value for entire 5-minute period.)

TIME(HRS)	VOLUME (AF)	Q(CFS) 0.	6.9	13.8	20.7	27.5
15.800	1.1333	4.63 .	Q .	V	•	•
15.817	1.1400	4.83 .	Q.	V		•
15.833	1.1469	5.03 .	Q.	V	•	•
15.850	1.1542	5.25 .	ç.	V	•	•
15.867	1.1618	5.52 .	Q.	V	•	
15.883	1.1697	5.79 .	Q.	V		
15.900	1.1781	6.06 .	Q.	.V	•	•
15.917	1.1868	6.34 .	Q.	.V		•
15.933	1.1959	6.61 .	Q.	.V	•	
15.950	1.2054	6.89 .	Q	.V		•
15.967	1.2153	7.16 .	Q	.V		•
15.983	1.2255	7.44 .	Q	.V		
16.000	1.2362	7.71 .	.Q	. V		
16.017	1.2484	8.89 .	. Q	. V		
16.033	1.2635	10.96 .	•	Q.V		
16.050	1.2814	13.03 .		Q.V		
16.067	1.3022	15.10 .		.Q V		
16.083	1.3259	17.17 .		. VQ).	
16.100	1.3524	19.24 .		. V		
16.117	1.3817	21.31 .		. V	~	
16.133	1.4140	23.38	•		v . Q	•
16.150	1.4490	25.45	•	•	v .	ç.
16.167	1.4869	27.54 .	•	•	v.	ν. Ω
16.183	1.5215	25.09 .	•	•	v.	Q.
16.200	1.5526	22.60 .	•	•	v . Q	~ •
16.217	1.5803	20.12 .	•	•	VQ.	•
16.233	1.6046	17.63	·	•	QVQ.	•
16.250	1.6255	15.15 .	·	.Q	v . v.	•
16.267	1.6429	12.66 .	·		v. V.	•
16.283	1.6570	10.18	•	Ω.	v. V.	•
16.300	1.6676	7.70		2.	v. v.	•
16.317	1.6747	5 01	.Q 0 .	•	v. V.	•
16.333	1.6801	0 0 7	2	•	v . V	•
		3.87 . 3.76 .	Q.	•	V	•
16.350	1.6853		Q.	•		•
16.367	1.6903	3.66 .	Q.	•	V	•
16.383	1.6952	3.55 .	Q.	•	V	•
16.400	1.6999	3.44 .	Q .	٠	V	•
16.417	1.7045	3.34 .	Q.	٠	V	•
16.433	1.7090	3.23 .	Q.	•	V	•
16.450	1.7133	3.13 .	Q.		V	•
16.467	1.7174	3.02 .	ς.		V	•
16.483	1.7215	2.92 .	Q.	•	V	•
16.500	1.7254	2.87 .	ç.	•	V	•
16.517	1.7293	2.82 .	Q.	•	V	•
16.533	1.7331	2.77 .	ο.		V	

16.550	1.7369	2.73		Q	•	•	.V	•
16.567	1.7406	2.68		~	•	•	.V	•
16.583	1.7442	2.64		-	•	•	.V	•
16.600	1.7478	2.59	•	Q	•	•	.V	•
16.617	1.7513	2.55		Q			.V	•
16.633	1.7547	2.50		Q			.V	
16.650	1.7581	2.46		Q			.V	
16.667	1.7614	2.42		Q			.V	
16.683	1.7647	2.39		Q			.V	
16.700	1.7680	2.35		Q			.V	
L6.717	1.7712	2.32		Q			.V	
16.733	1.7743	2.28		Q			.V	•
16.750	1.7774	2.25		Q			.V	
L6.767	1.7805	2.21		Q			.V	
L6.783	1.7834	2.18		Q			.V	
L6.800	1.7864	2.14	·	Q	•	•	.V	•
TTME DIE	RATION (minute	(c) OF PF	RCF	NTTLF	S OF FST	TMATED PEAK	K FLOW BATE	
	LOO% of Peak	· ·					A LION IGID	•

Peak Flow Rate (minute	
=======================================	
0% 1009.()
10% 365.0)
20% 135.()
30% 85.()
40% 70.0)
50% 60.0)
60% 50.()
70% 35.0)
80% 25.0)
90% 15.0)

***************************************	**
FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 7	
>>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<	

*****	*****	******	*****	*****
FLOW PROCESS F	FROM NODE	6.00 TO NODE	6.00 IS CODE =	11
>>>>VIEW STRF	ZAM NIIMBER 1 HY	DROGRAPH<<<<		

STREAM HYDROGRAPH IN ONE-MINUTE UNIT INTERVALS(CFS) (Notes: Time indicated is at END of Each Unit Intervals. Peak 5-minute rainfall intensity is modeled as a constant value for entire 5-minute period.)

	a cons	cant value ioi	encire 5 m.	Indce peri	ou.,	
TIME(HRS)	VOLUME (AF)	Q(CFS) 0.	10.0	20.0	30.0	40.0
15.800 15.817	0.0010	10.72 . 11.02 .	Q .Q	V. V.	· ·	· ·

15 000	2 0010	11 01	<u>_</u>	7.7			16,000
15.833 15.850	3.2819 3.2979	11.31 . 11.62 .	.Q .Q	V. V.	•	•	16.800
15.867	3.3144	11.99 .	• 2 • Q	v. V.	•		TIME DU
15.883	3.3315	12.36	. Q	v.			(Note:
15.900	3.3490	12.74 .	. Q	ν.			an inst
15.917	3.3671	13.12 .	. Q	V.			
15.933	3.3857	13.51 .	. Q	V			Percent
15.950	3.4049	13.89 .	. Q	V			Pea
15.967	3.4245	14.28 .	. Q	V			
15.983	3.4447	14.67 .	. Q	V	•		
16.000	3.4655	15.06 .		Q V	•		
16.017	3.4880	16.37 .		Q V	•		
16.033	3.5137	18.64 .	•	Q V	•		
16.050	3.5426	21.00 .	•	Q	•	•	
16.067	3.5749	23.43 .	•	.V Q	•		
16.083	3.6106	25.95 .	•	.V Q	•	•	
16.100	3.6499	28.54 .	•	.V Q		•	
16.117	3.6929	31.20 .	•	.V	•Q	•	
16.133	3.7396	33.93 .	•	. V	• Q	•	
16.150	3.7899	36.50 .	•	. V		· .	
16.167 16.183	3.8435 3.8941	38.90 . 36.73 .	•	. V . V	· Q · Q	•	* * * * * * * * * * *
16.200	3.9417	0. F.C	•	. v . v	. Q . Q	•	FLOW PRO
16.200	3.9417	34.56 . 32.42 .	:	. v . v	. v . v	•	LTOM LU
16.233	4.0281	30.31 .	•	. v	· γ Q		>>>>FL(
16.250	4.0670	28.22	•	. V Q			========
16.267	4.1030	26.15 .		. V Q			
16.283	4.1362	24.11 .		. Q			
16.300	4.1666	22.10 .		. Q V			
16.317	4.1943	20.11 .		QV			
16.333	4.2209	19.25 .		Q. V			
16.350	4.2478	19.55 .	•	Q. V	•		
16.367	4.2750	19.75 .		Q. V	•		
16.383	4.3024	19.90 .		Q. V	•		
16.400	4.3300	20.03 .	•	Q V	•		
16.417	4.3577	20.13 .	•	Q V	•		
16.433	4.3855	20.20 .	•	V Q	•		
16.450	4.4134	20.24 .	•	Q V	•		
16.467	4.4413	20.25 .	•	Q V	•	•	
16.483	4.4692	20.24 .	•	Q V	•	· .	
16.500	4.4971	20.25 . 20.24 .	•	Q V Q V	•	•	
16.517 16.533	4.5250 4.5528		•	Q V Q V	•	·	
16.550	4.5320	20.20 . 20.14 .	•	Q V	•	•	
16.567	4.6082	20.06 .	•	Q V	•		
16.583	4.6356	19.95		Q. V	•		I
16.600	4.6629	19.81 .		Q. V			
16.617	4.6900	19.65 .	•	Q. V			5
16.633	4.7168	19.47 .		õ. v			
16.650	4.7433	19.27 .		Q. V			
16.667	4.7696	19.05 .		Q. V			
16.683	4.7955	18.83 .		Q.V			
16.700	4.8212	18.61 .		Q.V	•		
16.717	4.8465	18.40 .		Q.V			
16.733	4.8715	18.18 .	•	Q.V			I
16.750	4.8963	17.96 .	•	Q.V		•	
16.767	4.9207	17.71 .	•		V.	•	
16.783	4.9446	17.41 .	•	Q. 7	V.	•	

Percentile of Estimated Peak Flow Rate	(mi	ation .nutes)		
0%		09.0		
10%		09.0		
20%		55.0		
30% 40%		80.0 85.0		
50%		.75.0		
60%		70.0		
70%		50.0		
80% 00%		35.0		
90%		15.0		
<pre>>>>>Flow_TROUGH DETENTION BASIN</pre>	TO NODE	6.00 IS	CODE = 3.2	
INFLOW (STREAM 1)				
(SIKEAM I)				
i				
V		ective de	-	
	(and volum	ie)	
	V			
detention <		outflow	1	
basin				
	/ /	\ basin	outlet	
V	storage		outiet	
OUTFLOW		-		
(STREAM 1)				
ROUTE RUNOFF HYDROGRAPH FF	OM STREAM N	IUMBER 1		
THROUGH A FLOW-THROUGH DET				
SPECIFIED BASIN CONDITIONS DEAD STORAGE(AF) =		LOWS:		
SPECIFIED DEAD STORAGE (A		= 0.0	00	
SPECIFIED EFFECTIVE VOLU	ME(AF) FILI	ED ABOVE	OUTLET =	0.000
DETENTION BASIN CONSTANT	LOSS RATE (CFS) =	0.00	
BASIN DEPTH VERSUS OUTFLOW	I AND STORAG	GE INFORMA	TION:	

4.9682 17.10 . Q . V. .

- 12

1	0.00	0.00	0.000
2	1.00	15.88	0.260
3	2.00	22.46	0.590
4	3.00	27.51	0.970

MODIFIED-PULS BASIN ROUTING MODEL RESULTS (1-MINUTE COMPUTATION INTERVALS): (Note: Computed EFFECTIVE DEPTH and VOLUME are estimated at the clock time; MEAN OUTFLOW is the average value during the unit interval.)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CLOCK TIME (HRS)	DEAD-STORAGE FILLED(AF)	INFLOW (CFS)	LOSS (CFS)	EFFECTIVE DEPTH(FT)	MEAN OUTFLOW (CFS)	EFFECTIVE VOLUME (AF)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.817	0.000	11.02	0.00	0.57	9.0	0.149
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.833	0.000	11.31	0.00	0.58	9.2	0.152
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.850	0.000	11.62	0.00	0.60	9.4	0.155
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.867	0.000	11.99	0.00	0.61	9.6	0.158
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.883	0.000		0.00		9.8	0.162
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.167					17.7	0.365
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.183	0.000		0.00	1.40	18.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.200	0.000	34.56	0.00	1.46	18.7	0.413
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.217		32.42	0.00	1.52	19.1	0.431
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.233	0.000					0.446
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
16.3830.00019.900.001.6420.10.47216.4000.00020.030.001.6420.10.47216.4170.00020.130.001.6420.10.47216.4330.00020.200.001.6420.10.47216.4500.00020.240.001.6420.10.47216.4670.00020.250.001.6420.10.47216.4830.00020.240.001.6420.10.47216.5000.00020.250.001.6420.10.472							
16.4000.00020.030.001.6420.10.47216.4170.00020.130.001.6420.10.47216.4330.00020.200.001.6420.10.47216.4500.00020.240.001.6420.10.47216.4670.00020.250.001.6420.10.47216.4830.00020.240.001.6420.10.47216.5000.00020.250.001.6420.10.472							
16.4170.00020.130.001.6420.10.47216.4330.00020.200.001.6420.10.47216.4500.00020.240.001.6420.10.47216.4670.00020.250.001.6420.10.47216.4830.00020.240.001.6420.10.47216.5000.00020.250.001.6420.10.472							
16.4330.00020.200.001.6420.10.47216.4500.00020.240.001.6420.10.47216.4670.00020.250.001.6420.10.47216.4830.00020.240.001.6420.10.47216.5000.00020.250.001.6420.10.472							
16.4500.00020.240.001.6420.10.47216.4670.00020.250.001.6420.10.47216.4830.00020.240.001.6420.10.47216.5000.00020.250.001.6420.10.472							
16.4670.00020.250.001.6420.10.47216.4830.00020.240.001.6420.10.47216.5000.00020.250.001.6420.10.472							
16.4830.00020.240.001.6420.10.47216.5000.00020.250.001.6420.10.472							
16.500 0.000 20.25 0.00 1.64 20.1 0.472							
		0.000				20.1	0.473

	16.533						
	16.533						
		0.000	20.20	0.00	1.64	20.1	0.4
	16.550	0.000	20.14	0.00	1.64	20.1	0.4
	16.567	0.000	20.06	0.00	1.64	20.1	0.4
	16.583	0.000	19.95	0.00	1.64	20.1	0.4
	16.600	0.000	19.81	0.00	1.64	20.1	0.4
	16.617	0.000	19.65	0.00	1.64	20.1	0.4
	16.633	0.000	19.47	0.00	1.64	20.1	0.4
	16.650	0.000	19.27	0.00	1.63	20.1	
	16.667	0.000	19.05	0.00	1.63	20.0	0.4
	16.683	0.000	18.83	0.00	1.63	20.0	0.4
	16.700	0.000	18.61	0.00	1.62	20.0	0.4
	16.717	0.000	18.40	0.00	1.61	19.9	0.4
	16.733	0.000	18.18	0.00	1.61	19.9	0.4
	16.750	0.000	17.96	0.00	1.60	19.8	0.4
	16.767	0.000	17.71	0.00	1.59		
	16.783	0.000	17.41	0.00	1.58	19.7	0.4
	16.800	0.000	17.10	0.00	1.57	19.7	0.4
INFLOW BASIN	SUMMARY OF S VOLUME = STORAGE = W VOLUME =	6.765	AF (WITH	0.0	00 AF INIT	IALLY FI	LLED)
	CESS FROM NO W STREAM NUM						
>>>>VIE	W STREAM NUM STREAM HYD STREAM HYD otes: Time i	BER 1 HYD ======= ROGRAPH I ndicated	ROGRAPH<<- ===================================	<<< NUTE UNIT of Each	INTERVALS	(CFS)	
>>>>VIE 	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons	BER 1 HYD ROGRAPH I ndicated -minute r tant valu	ROGRAPH< NONE-MIN is at END ainfall in e for ent:	<<< of Each ntensity ire 5-min		(CFS) vals. l as l.)	30.0
>>>>VIE (Na 'IME (HRS)	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME(AF)	BER 1 HYD ROGRAPH I ndicated -minute r tant valu Q(CFS)	N ONE-MIN is at END ainfall in e for ent: 0.	VUTE UNIT of Each htensity ire 5-min 7.5	INTERVALS Unit Inter is modelec ute perioc 15.0	(CFS) vals. l as l.) 22.5	30.0
>>>>VIE (Na 21ME (HRS) 15.800	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME (AF) 3.1050	BER 1 HYD ROGRAPH I ndicated -minute r tant valu Q(CFS) 8.85	ROGRAPH< N ONE-MIN is at END ainfall in e for ent: 0.	< vUTE UNIT of Each htensity ire 5-min 7.5 .Q	VINTERVALS Unit Inter is modelec ute perioc 15.0 V.	(CFS) vals. las l.) 22.5	30.0
>>>>VIE (Na 2IME (HRS) 15.800 15.817	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME(AF) 3.1050 3.1174	BER 1 HYD ROGRAPH I ndicated -minute r tant valu Q(CFS) 8.85 9.01	ROGRAPH< N ONE-MIN is at END ainfall in e for ent: 0.	< vUTE UNIT of Each thensity ire 5-min 7.5 .Q .Q .Q	V INTERVALS Unit Inter is modelec ute perioc 15.0 V . V .	(CFS) vals. l as l.) 22.5	30.0
<pre>>>>>VIE (N4 'IME(HRS) 15.800 15.817 15.833</pre>	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME (AF) 3.1050 3.1174 3.1301	BER 1 HYD ROGRAPH I ndicated -minute r tant valu Q(CFS) 8.85 9.01 9.18	ROGRAPH< N ONE-MIN is at END ainfall in e for ent: 0.	VUTE UNIT of Each ntensity ire 5-min 7.5 .Q .Q . Q	INTERVALS Unit Inter is modelec ute perioc 15.0 V. V. V. V.	(CFS) vals. las l.) 22.5	30.0
<pre>>>>>VIE (N4 'IME(HRS) 15.800 15.817 15.833 15.850</pre>	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME (AF) 3.1050 3.1174 3.1301 3.1430	BER 1 HYD 	ROGRAPH< N ONE-MIN is at END ainfall in e for ent: 0.	<pre><<< NUTE UNIT of Each ntensity ire 5-min 7.5 .Q .Q .Q .Q .Q .Q .Q .Q .Q .Q</pre>	VINTERVALS Unit Inter is modelec ute perioc 15.0 V. V. V. V. V. V.	(CFS) vals. las l.) 22.5	30.0
<pre>>>>>VIE (N4 'IME(HRS) 15.800 15.817 15.833 15.850 15.867</pre>	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME (AF) 3.1050 3.1174 3.1301 3.1430 3.1562	BER 1 HYD 	ROGRAPH< 	<	VINTERVALS Unit Inter is modelec ute perioc 15.0 V. V. V. V. V. V. V. V. V. V. V.	(CFS) vals. las l.) 22.5	30.0
<pre>>>>>VIE (Na IME(HRS) 15.800 15.817 15.833 15.850 15.867 15.883</pre>	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME (AF) 3.1050 3.1174 3.1301 3.1430 3.1562 3.1696	BER 1 HYD ROGRAPH I ndicated -minute r tant valu Q(CFS) 8.85 9.01 9.18 9.37 9.56 9.78	ROGRAPH< 	<pre><<< NUTE UNIT of Each ntensity ire 5-min 7.5 .Q .Q .Q .Q .Q .Q .Q .Q .Q .Q</pre>	VINTERVALS Unit Inter is modelec ute perioc 15.0 V. V. V. V. V. V. V. V. V. V. V. V. V.	(CFS) vals. las l.) 22.5	30.0
<pre>>>>>VIEU (Na 'TME(HRS) 15.800 15.817 15.833 15.850 15.867 15.883 15.900</pre>	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME (AF) 3.1050 3.1174 3.1301 3.1430 3.1562 3.1696 3.1834	BER 1 HYD 	ROGRAPH< 	<	VINTERVALS Unit Inter is modelec ute perioc 15.0 V. V. V. V. V. V. V. V. V. V. V. V. V.	(CFS) vals. las l.) 22.5	30.0
<pre>>>>>VIEU (Na 'TME(HRS) 15.800 15.817 15.833 15.850 15.867 15.883 15.900</pre>	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME (AF) 3.1050 3.1174 3.1301 3.1430 3.1562 3.1696	BER 1 HYD ROGRAPH I ndicated -minute r tant valu Q(CFS) 8.85 9.01 9.18 9.37 9.56 9.78	ROGRAPH< 	<	VINTERVALS Unit Inter is modelec ute perioc 15.0 V. V. V. V. V. V. V. V. V. V. V. V. V.	(CFS) vals. las l.) 22.5	30.0
<pre>>>>>VIE (Na (Ma IME (HRS)) 15.800 15.817 15.833 15.850 15.867 15.883 15.900 15.917</pre>	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME (AF) 3.1050 3.1174 3.1301 3.1430 3.1562 3.1696 3.1834	BER 1 HYD 	ROGRAPH< 	<	VINTERVALS Unit Inter is modelec ute perioc 15.0 V. V. V. V. V. V. V. V. V. V. V. V. V.	(CFS) vals. las l.) 22.5	30.0
<pre>>>>>VIE (N4 IME (HRS) 15.800 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933</pre>	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME (AF) 3.1050 3.1174 3.1301 3.1430 3.1562 3.1696 3.1834 3.1975	BER 1 HYD 	ROGRAPH< N ONE-MIN is at END ainfall in e for ent: 0.	<	VINTERVALS Unit Inter is modeled ute period 15.0 V. V. V. V. V. V. V. V. V. V. V. V. V.	(CFS) vals. las l.) 22.5	30.0
<pre>>>>>VIE (N4 IME (HRS) 15.800 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950</pre>	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME (AF) 3.1050 3.1174 3.1301 3.1430 3.1562 3.1696 3.1834 3.1975 3.2120	BER 1 HYD 	ROGRAPH< N ONE-MIN is at END ainfall in e for ent: 0.	<	V INTERVALS Unit Inter is modelec ute perioc 15.0 V. V. V. V. V. V. V. V. V. V. V. V. V.	(CFS) vals. las l.) 22.5	30.0
<pre>>>>>VIEI (N4 'IME (HRS) '5.800 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.950 15.967</pre>	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME (AF) 3.1050 3.1174 3.1301 3.1430 3.1562 3.1696 3.1834 3.1975 3.2120 3.2268	BER 1 HYD 	ROGRAPH< N ONE-MIN is at END ainfall in e for ent: 0.	<	V INTERVALS Unit Inter is modelec ute perioc 15.0 V. V. V. V. V. V. V. V. V. V. V. V. V.	(CFS) vals. las l.) 22.5	30.0
<pre>>>>>VIE (N (' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '</pre>	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME (AF) 3.1050 3.1174 3.1301 3.1430 3.1562 3.1696 3.1834 3.1975 3.2120 3.2268 3.2419 3.2575	BER 1 HYD BER 1 HYD mdicated minute r tant valu Q(CFS) 8.85 9.01 9.18 9.37 9.56 9.78 10.00 10.24 10.49 10.75 11.01 11.29	ROGRAPH< N ONE-MIN is at END ainfall in e for ent: 0.	<pre><<<</pre>	V INTERVALS Unit Inter is modelec ute perioc 15.0 V. V. V. V. V. V. V. V. V. V. V. V. V.	(CFS) vals. las l.) 22.5	30.0
<pre>>>>>VIE (N4 'IME(HRS) 15.800 15.817 15.833 15.850 15.867 15.933 15.950 15.947 15.933 15.950 15.967 15.983 16.000</pre>	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME (AF) 3.1050 3.1174 3.1301 3.1430 3.1562 3.1696 3.1834 3.1975 3.2120 3.2268 3.2419 3.2575 3.2734	BER 1 HYD BER 1 HYD mdicated -minute r tant valu Q(CFS) 8.85 9.01 9.18 9.37 9.56 9.78 10.00 10.24 10.49 10.75 11.01 11.29 11.58	ROGRAPH< N ONE-MIN is at END ainfall in e for ent: 0.	<pre><<<</pre>	<pre>' INTERVALS Unit Inter is modelec ute perioc 15.0 V. V. V. V. V. V. V. V. V. V. V. V. V.</pre>	(CFS) vals. las l.) 22.5	30.0
<pre>>>>>VIE (N4 'TME(HRS) 15.800 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.983 16.000 16.017</pre>	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME (AF) 3.1050 3.1174 3.1301 3.1430 3.1562 3.1696 3.1834 3.1975 3.2120 3.2268 3.2419 3.2575 3.2734 3.2899	BER 1 HYD BER 1 HYD mdicated minute r tant valu Q(CFS) 8.85 9.01 9.18 9.37 9.56 9.78 10.00 10.24 10.49 10.75 11.01 11.29 11.58 11.92	ROGRAPH< N ONE-MIN is at END ainfall in e for ent: 0.	<pre><<<</pre>	V INTERVALS Unit Inter is modelec ute perioc 15.0 V. V. V. V. V. V. V. V. V. V. V. V. V.	(CFS) vals. las l.) 22.5	30.0
<pre>>>>>VIE (N4 'TME (HRS) 15.800 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.983 16.000 16.017 16.033</pre>	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME (AF) 3.1050 3.1174 3.1301 3.1430 3.1562 3.1696 3.1834 3.1975 3.2120 3.2268 3.2419 3.2575 3.2734 3.2899 3.3069	BER 1 HYD BER 1 HYD mdicated minute r tant valu Q(CFS) 8.85 9.01 9.18 9.37 9.56 9.78 10.00 10.24 10.49 10.75 11.01 11.29 11.58 11.92 12.37	ROGRAPH< N ONE-MIN is at END ainfall in e for ent: 0.	<pre><<<</pre>	V INTERVALS Unit Inter is modelec ute period 15.0 V. V. V. V. V. V. V. V. V. V. V. V. V.	(CFS) vals. las l.) 22.5	30.0
<pre>>>>>VIE (N4 'TME (HRS) 15.800 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.983 16.000 16.017 16.033 16.050</pre>	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME (AF) 3.1050 3.1174 3.1301 3.1430 3.1562 3.1696 3.1834 3.1975 3.2120 3.2268 3.2419 3.2575 3.2734 3.2899 3.3069 3.3248	BER 1 HYD BER 1 HYD mdicated minute r tant valu Q(CFS) 8.85 9.01 9.18 9.37 9.56 9.78 10.00 10.24 10.49 10.75 11.01 11.29 11.58 11.92 12.37 12.97	ROGRAPH< N ONE-MIN is at END ainfall in e for ent: 0.	<pre><<<</pre>	V INTERVALS Unit Inter is modelec ute period 15.0 V. V. V. V. V. V. V. V. V. V. V. V. V.	(CFS) vals. las l.) 22.5	30.0
<pre>>>>>VIEI (N4 'TME (HRS) 15.800 15.817 15.833 15.850 15.947 15.933 15.950 15.967 15.983 16.000 16.017 16.033 16.050 16.050 16.067</pre>	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME (AF) 3.1050 3.1174 3.1301 3.1430 3.1562 3.1696 3.1834 3.1975 3.2120 3.2268 3.2419 3.2275 3.2734 3.2899 3.3069 3.3248 3.3436	BER 1 HYD BER 1 HYD mdicated minute r tant valu Q(CFS) 8.85 9.01 9.18 9.37 9.56 9.78 10.00 10.24 10.49 10.75 11.01 11.29 11.58 11.92 12.37 12.97 13.71	ROGRAPH< N ONE-MIN is at END ainfall in e for ent: 0.	<pre><<<</pre>	VINTERVALS Unit Inter is modelec ute period 15.0 V. V. V. V. V. V. V. V. V. V. V. V. V.	(CFS) vals. las l.) 22.5	30.0
<pre>>>>>VIE (N4 'TME (HRS) 15.800 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.983 16.000 16.017 16.033 16.050</pre>	W STREAM NUM STREAM HYD otes: Time i Peak 5 a cons VOLUME (AF) 3.1050 3.1174 3.1301 3.1430 3.1562 3.1696 3.1834 3.1975 3.2120 3.2268 3.2419 3.2575 3.2734 3.2899 3.3069 3.3248	BER 1 HYD BER 1 HYD mdicated minute r tant valu Q(CFS) 8.85 9.01 9.18 9.37 9.56 9.78 10.00 10.24 10.49 10.75 11.01 11.29 11.58 11.92 12.37 12.97	ROGRAPH< N ONE-MIN is at END ainfall in e for ent: 0.	<pre><<<</pre>	V INTERVALS Unit Inter is modelec ute period 15.0 V. V. V. V. V. V. V. V. V. V. V. V. V.	(CFS) vals. las l.) 22.5	30.0

16.133	3.4303	16.63 .		VQ.		17.100	4.9841	17.65 .		. Q	V.	
16.150	3.4539	17.13 .		v Q.		17.117	5.0082	17.50 .		. Q	v.	
16.167	3.4783	17.69 .	•	ν _Q .		17.133	5.0321	17.34 .		, õ	ν.	
16.183	3.5034	18.23 .	•	v v .		17.150	5.0557	17.16 .		. Q	v.	•
16.200	3.5292	18.70 .	•	v ç .		17.167	5.0791	16.98 .		. Q	v	•
16.217	3.5555	19.10 .	•	~	· ·	17.183	5.1023	16.80 .	•		v	•
			•		· ·				•	. Q		·
16.233	3.5822	19.44 .	•	.VQ.	•	17.200	5.1251	16.60 .	•	. Q	V	•
16.250	3.6094	19.70 .	•	.V Q .	· ·	17.217	5.1477	16.41 .		.Q	V	•
16.267	3.6368	19.91 .	•	.V Q .	•	17.233	5.1701	16.21 .	•	٠Q	V	•
16.283	3.6644	20.05 .	•	.V Q .	•	17.250	5.1921	16.00 .		٠Q	V	•
16.300	3.6921	20.13 .	•	.V Q .		17.267	5.2136	15.61 .		Q	V	•
16.317	3.7199	20.16 .		.V Q .		17.283	5.2343	15.02 .		Q	V	•
16.333	3.7477	20.14 .		.VQ.		17.300	5.2542	14.44 .		Q.	.V	•
16.350	3.7754	20.12 .		.VQ.		17.317	5.2733	13.89 .	•	Q.	.V	
16.367	3.8031	20.11 .		.VQ.		17.333	5.2917	13.37 .		Q.	.V	
16.383	3.8308	20.10 .		.VQ.		17.350	5.3094	12.87 .		Q.	.V	
16.400	3.8584	20.10 .		. V Q .		17.367	5.3265	12.39 .		Q .	.V	
16.417	3.8861	20.10 .		.v õ.		17.383	5.3430	11.94 .			.V	
16.433	3.9138	20.10		. v Q .		17.400	5.3588	11.51 .			.V	
16.450	3.9415	20.10 .	•	. v g .		17.417	5.3741	11.10 .	-	-	.v .V	
16.467	3.9692	20.10 .	•	. V Q .	·	17.433	5.3889	10.72 .		•	.v .V	•
16.483	3.9969	20.11 .	•	. V Q .	·	17.450	5.4031	10.35 .	-	•	.v .V	•
16.500	4.0246	20.11 .	•		·	17.450	5.4051	10.01 .		•	. V	•
16.517			•		•	17.483		9.68		•	. v	•
	4.0523		•		·		5.4303			•		•
16.533	4.0800	20.12 .	•	. VQ.	•	17.500	5.4432	9.37 .		•	. V	•
16.550	4.1078	20.12 .	•	• VQ••	· ·	17.517	5.4557	9.07 .		•	. V	·
16.567	4.1355	20.12 .	•	. VQ.	•	17.533	5.4678	8.79 .		•	. V	•
16.583	4.1632	20.12 .	•	. VQ.	•	17.550	5.4795	8.53 .		•	. V	•
16.600	4.1909	20.11 .	•	. VQ.	•	17.567	5.4909	8.28 .		•	. V	•
16.617	4.2186	20.10 .	•	. VQ.	•	17.583	5.5020	8.04 .		•	. V	•
16.633	4.2462	20.09 .	•	. VQ .		17.600	5.5128	7.82 .		•	. V	•
16.650	4.2739	20.07 .		. VQ .		17.617	5.5232	7.61 .			. V	•
16.667	4.3015	20.04 .		. VQ .		17.633	5.5334	7.40 .	Q.		. V	
16.683	4.3291	20.01 .		. VQ .		17.650	5.5434	7.21 .	Q.	•	. V	
16.700	4.3566	19.98 .		. VQ .		17.667	5.5531	7.03 .	Q.		. V	
16.717	4.3840	19.94 .		. VQ .		17.683	5.5625	6.86 .	Q.		. V	
16.733	4.4114	19.89 .		. Q.		17.700	5.5717	6.70 .	ο.		. V	
16.750	4.4388	19.84 .		. Q.		17.717	5.5808	6.55 .	Q.		. V	
16.767	4.4660	19.79 .		. ą̃.		17.733	5.5896	6.40 .	-		. V	
16.783	4.4932	19.73	•	. ç.		17.750	5.5982	6.26 .		-	. v	•
16.800	4.5203	19.66	•	. ç		17.767	5.6066	6.13 .		•	. V	•
16.817	4.5473	19.59 .	•	· Q ·	·	17.783	5.6149	6.01 .		•	. v	•
16.833	4.5741	19.55 .	•	. QV.	·	17.800	5.6230	5.89 .		•	. v	•
16.850	4.6009	19.42 .	•	. QV.	·	I	J.02JU	J.UJ .	¥ •	•	• v	•
16.850	4.6009		•	. QV. . QV.	·	THE DIE	ATTON /min-+		ENTILES OF ESTI	ייים משייעאי		
			•		·							
16.883	4.6540	19.24 .	•	. QV.	·				estimate assume	u lo nave		
16.900	4.6804	19.14 .	•	. QV.	·	an insta	intaneous ti	me duration	.)			
16.917	4.7066	19.04 .	•	. QV.	·							
16.933	4.7327	18.93 .	•	. QV.	·		le of Estim	ated	Durat			
16.950	4.7586	18.81 .	•	. QV.	•		: Flow Rate		(minu			
16.967	4.7844	18.70 .	•	. Q V.	•			====	=====			
16.983	4.8099	18.58 .	•	. Q V.			0%		1069			
17.000	4.8354	18.46 .		. Q V.			10%		1069	.0		
17.017	4.8606	18.33 .		. Q V.			20%		1069	.0		
17.033	4.8857	18.20 .		. Q V.			30%		830	.0		
17.050	4.9106	18.07 .		. Q V.			40%		565	.0		
17.067	4.9353	17.94 .		. Q V.			50%		465	.0		
17.083	4.9598	17.80 .		. Q V.			60%		405			
			- 15 -						- 16 -			

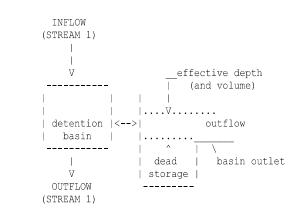
70%	370.0	
80%	340.0	
90%	260.0	

TOTAL CATCHMENT SOIL-LOSS VOLUME (ACRE-FEET) = _____ FLOOD ROUTING ANALYSIS USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986) (c) Copyright 1989-2017 Advanced Engineering Software (aes) Ver. 21.1 Release Date: 01/17/2017 License ID 1419 Analysis prepared by: * OAK GROVE DEVELOPMENT * AREA C 10-YEAR HC PROPOSED CONDITION * SMALL AREA HYDROGRAPH MODEL - JULY 2017 FILE NAME: OAKC10.DAT TIME/DATE OF STUDY: 20:53 12/03/2017 The Small Area Unit Hydrograph Procedures in Section J of the Hydrology Manual provides estimates of runoff hydrograph and runoff volume for watersheds whose time of concentration is less than 25 minutes. The PROGRAM User should check the applicability of using the small area unit hydrograph procedures, and follow the guidelines in Sections J and K.5 in complex watershed modeling. FLOW PROCESS FROM NODE 20.00 TO NODE 23.00 IS CODE = 1.2 _____ >>>>SUBAREA RUNOFF (SMALL AREA UNIT-HYDROGRAPH ANALYSIS) <<<<< (SMALL AREA UNIT-HYDROGRAPH ADDED TO STREAM #1) RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90 TOTAL CATCHMENT AREA(ACRES) = 5.25 SOIL-LOSS RATE, Fm, (INCH/HR) = 0.120 LOW LOSS FRACTION = 0.390 TIME OF CONCENTRATION(MIN.) = 9.33 SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED: RETURN FREQUENCY (YEARS) = 10 5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.34 30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.72 1-HOUR POINT RAINFALL VALUE(INCHES) = 0.95 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.59 6-HOUR POINT RAINFALL VALUE (INCHES) = 2.20 24-HOUR POINT RAINFALL VALUE (INCHES) = 3.68 _____ TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = 0.98

0.63

HYDROGRAPH IN ONE-MINUTE UNIT INTERVALS(CFS) (Notes: Time indicated is at END of Each Unit Intervals. Peak 5-minute rainfall intensity is modeled as a constant value for entire 5-minute period.)

TIME (HRS)	VOLUME (AF)	Q(CFS) 0.	3.2	6.4	9.6	12.8
15.800	0.4868	2.38 .	Q.	V.	•	
15.817	0.4902	2.50 .	Q.	V.		•
15.833	0.4938	2.61 .	Q.	V	•	•
15.850	0.4976	2.73 .	Q.	V		•
15.867	0.5015	2.86 .	Q.	V	•	•
15.883	0.5056	2.99 .	Q.	V	•	•
15.900	0.5099	3.12 .	Q.	V	•	•
15.917	0.5144	3.24 .	Q	V	•	•
15.933	0.5190	3.37 .	Q	.V	•	
15.950	0.5239	3.50 .	Q	.V		
15.967	0.5289	3.63 .	.Q	.V		
15.983	0.5340	3.76 .	.Q	.V		
16.000	0.5394	3.89 .	. Q	.V		
16.017	0.5455	4.43 .	. Q	. V		
16.033	0.5529	5.38 .		Q.V		
16.050	0.5616	6.33 .		Q. V		
16.067	0.5717	7.29 .		. QV		
16.083	0.5830	8.24 .		. V	ç.	•
16.100	0.5957	9.20 .		. V	_ Q .	
16.117	0.6097	10.15 .		. v	~	
16.133	0.6250	11.10 .			v . Q	
16.150	0.6416	12.06 .			v .	Q.
16.167	0.6593	12.85 .			v .	Q
16.183	0.6751	11.49 .			v .	ç.
16.200	0.6893	10.34 .			V . Q	
16.217	0.7020	9.18 .			Q.	
16.233	0.7130	8.02		. Q		
16.250	0.7225	6.87 .		.Q	v.	
16.267	0.7304	5.71 .		Q.	v.	
16.283	0.7366	4.55 .	. Q	2 .	v.	
16.300	0.7413	3.40 .	Q		V	
16.317	0.7445	2.30 .	0.		v	
16.333	0.7472	2.00 .	o .		v	
16.350	0.7499	1.92 .	Q.		V	
16.367	0.7524	1.85 .	Q .		v	
16.383	0.7549	1.78 .	Q .		v	
16.400	0.7573	1.71 .	ý ·	•	v	•
16.417	0.7595	1.64 .	ō .	•	v	•
16.433	0.7617	1.57 .	° .		v	•
16.450	0.7638	1.50 .	Ω.	•	.v	•
16.467	0.7657	1.43 .	Q .	•	.v .V	•
16.483	0.7676	1.38 .	Q .	•	.v .V	•
16.500	0.7695	1.35 .	ç.	•	.v .V	•
16.517	0.7713	1.33 .	Q .	•	.v .V	•
16.533	0.7731	1.30 .	Q . Q .	•	.v .V	•
TO.000	0.1151	T.30 .	¥ •	•	• V	•


16.550	0.7749	1.27 . Ç	· ·	•	.V	
16.567	0.7766	1.25 . Ç			.V	
16.583	0.7782	1.22 . Ç	2.		.V	
16.600	0.7799	1.19 . Ç	<u>)</u> .		.V	
16.617	0.7815	1.17 . Q	<u>.</u>		.V	
16.633	0.7831	1.14 . Ç	į .		.V	
16.650	0.7846	1.11 . Q	<u>)</u> .		.V	
16.667	0.7861	1.09 . Q	<u>)</u> .		.V	
16.683	0.7876	1.06 . Q	į .	•	.V	
16.700	0.7890	1.04 . Ç	<u>)</u> .	•	. V	
16.717	0.7904	1.02 . Ç	<u>.</u>	•	. V	
16.733	0.7918	0.99 . Q	į .		. V	
16.750	0.7931	0.97 . Ç	į .		. V	
16.767	0.7944	0.94 .Q			. V	
16.783	0.7957	0.92 .Q			. V	
16.800	0.7969	0.90 .Q			. V	

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

0% 1009.0 10% 380.0 20% 145.0 30% 90.0
10% 380.0 20% 145.0
20% 145.0
200
30% 90.0
40% 75.0
50% 60.0
60% 50.0
70% 40.0
80% 25.0
90% 10.0

>>>>FLOW-THROUGH DETENTION BASIN ROUTING MODEL APPLIED TO STREAM #1<<<<<

							16.200	0.000	10.34	0.00	4.46	2.5	0.42
							16.217	0 000	0 10	0 00	1 5 6	2.7	
	NOFF HYDROGRAF	U FDOM CT	DEAM NIIM	1 מעס			16.233	0.000 0.000	9.18 8.02	0.00 0.00	4.56 4.64	2.7	0.43
	A FLOW-THROUGH			DEK I			16.250	0.000	6.87	0.00	4.04	2.0	0.4
	D BASIN CONDIT			ws.			16.267	0.000	5.71	0.00	4.74	3.0	0.4
	TORAGE (AF) =	0.000					16.283	0.000	4.55	0.00	4.76	3.0	0.4
	IED DEAD STORA	GE(AF) FI	LLED =	0.000			16.300	0.000	3.40	0.00	4.77	3.0	0.4
SPECIF	IED EFFECTIVE	VOLUME (AF) FILLED	ABOVE OUT	LET =	0.000	16.317	0.000	2.30	0.00	4.76	3.0	0.4
DETENT	ION BASIN CONS	TANT LOSS	RATE (CF	S) = 0.	00		16.333	0.000	2.00	0.00	4.74	3.0	0.4
							16.350	0.000	1.92	0.00	4.73	3.0	0.4
							16.367	0.000	1.85	0.00	4.71	3.0	0.4
BASIN DE	PTH VERSUS OUT	FLOW AND	STORAGE	INFORMATIO	N:		16.383	0.000	1.78	0.00	4.69	2.9	0.4
		011000 011		51.05			16.400	0.000	1.71	0.00	4.67	2.9	0.4
INTERVA		OUTFLOW		RAGE			16.417	0.000	1.64	0.00	4.66	2.9	0.4
NUMBER 1	(FT) 0.00	(CFS) 0.00		AF) .000			16.433 16.450	0.000 0.000	1.57 1.50	0.00 0.00	4.64 4.62	2.9 2.8	0.
2	1.00	0.00		.090			16.450	0.000	1.30	0.00	4.02	2.8	0.
3	2.10	0.35		.200			16.483	0.000	1.38	0.00	4.57	2.8	0.4
4	4.00	1.96		.380			16.500	0.000	1.35	0.00	4.55	2.0	0.
5	6.00	4.74		.560			16.517	0.000	1.33	0.00	4.53	2.7	0.
6	8.10	10.56		.750			16.533	0.000	1.30	0.00	4.51	2.7	0.
7	10.00	17.22		.930			16.550	0.000	1.27	0.00	4.49	2.7	0.
8	12.10	25.78	1	.130			16.567	0.000	1.25	0.00	4.47	2.6	0.
9	14.00	38.50	1	.310			16.583	0.000	1.22	0.00	4.45	2.6	0.
							16.600	0.000	1.19	0.00	4.43	2.6	0.
							16.617	0.000	1.17	0.00	4.40	2.5	0.
											4 20	2.5	0.
							16.633	0.000	1.14	0.00	4.38		
D-PULS BA	SIN ROUTING MC	DEL RESUL	TS(1-MIN	UTE COMPUTA	ATION INT	'ERVALS):	16.650	0.000	1.11	0.00	4.36	2.5	0.
D-PULS BA Computed	SIN ROUTING MC EFFECTIVE DEPI	DEL RESUL' 'H and VOL	TS(1-MIN UME are	UTE COMPUTA estimated a	ATION INT at the cl	CERVALS): .ock time;	16.650 16.667	0.000 0.000	1.11 1.09	0.00 0.00	4.36 4.34	2.5 2.4	0. 0.
D-PULS BA Computed	SIN ROUTING MC	DEL RESUL' 'H and VOL	TS(1-MIN UME are	UTE COMPUTA estimated a	ATION INT at the cl	CERVALS): .ock time;	16.650 16.667 16.683	0.000 0.000 0.000	1.11 1.09 1.06	0.00 0.00 0.00	4.36 4.34 4.32	2.5 2.4 2.4	0.4 0.4 0.4
PULS BA mputed AN OUTF	SIN ROUTING MC EFFECTIVE DEPI	DEL RESUL' 'H and VOL	TS(1-MIN UME are	UTE COMPUTA estimated a	ATION INT at the cl interval.	CERVALS): .ock time;	16.650 16.667 16.683 16.700	0.000 0.000 0.000 0.000	1.11 1.09 1.06 1.04	0.00 0.00 0.00 0.00	4.36 4.34 4.32 4.30	2.5 2.4 2.4 2.4	0
PULS BA Nputed N OUTF CLOCK	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave	DEL RESUL H and VOL rage valu	TS(1-MIN UME are e during	UTE COMPUTA estimated a the unit :	ATION INT at the cl interval. MEAN	ERVALS): ock time;)	16.650 16.667 16.683 16.700 16.717	0.000 0.000 0.000 0.000 0.000	1.11 1.09 1.06 1.04 1.02	0.00 0.00 0.00 0.00 0.00	4.36 4.34 4.32 4.30 4.28	2.5 2.4 2.4 2.4 2.4 2.4	0. 0. 0. 0.
ULS BA puted N OUTF CLOCK	SIN ROUTING MC EFFECTIVE DEPI	DEL RESUL H and VOL rage valu	TS(1-MIN UME are e during LOSS	UTE COMPUTA estimated a the unit :	ATION INT at the cl interval. MEAN OUTFLOW	CERVALS): .ock time;	16.650 16.667 16.683 16.700	0.000 0.000 0.000 0.000	1.11 1.09 1.06 1.04	0.00 0.00 0.00 0.00	4.36 4.34 4.32 4.30	2.5 2.4 2.4 2.4	0. 0. 0. 0. 0.
PULS BA mputed AN OUTF CLOCK TIME (HRS)	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE	DEL RESUL H and VOL rage valu INFLOW (CFS)	TS(1-MIN UME are e during LOSS (CFS)	UTE COMPUT estimated a the unit : EFFECTIVE DEPTH(FT)	ATION INT at the cl interval. MEAN OUTFLOW (CFS)	YERVALS): ock time;) EFFECTIVE VOLUME (AF)	16.650 16.667 16.683 16.700 16.717 16.733	0.000 0.000 0.000 0.000 0.000 0.000	1.11 1.09 1.06 1.04 1.02 0.99	0.00 0.00 0.00 0.00 0.00 0.00	4.36 4.34 4.32 4.30 4.28 4.26	2.5 2.4 2.4 2.4 2.4 2.4 2.3	0. 0. 0. 0. 0. 0.
PULS BA nputed AN OUTF CLOCK TIME (HRS)	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED(AF)	DEL RESUL H and VOL rage valu INFLOW (CFS)	TS(1-MIN UME are e during LOSS (CFS)	UTE COMPUT estimated a the unit : EFFECTIVE DEPTH(FT)	ATION INT at the cl interval. MEAN OUTFLOW (CFS)	YERVALS): ock time;) EFFECTIVE VOLUME (AF)	16.650 16.667 16.683 16.700 16.717 16.733 16.750	0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.11 1.09 1.06 1.04 1.02 0.99 0.97	0.00 0.00 0.00 0.00 0.00 0.00 0.00	4.36 4.34 4.32 4.30 4.28 4.26 4.24	2.5 2.4 2.4 2.4 2.4 2.4 2.3 2.3	0. 0. 0. 0. 0. 0. 0.
PULS BA mputed AN OUTF CLOCK TIME (HRS) 15.817 15.833	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000	DEL RESUL' H and VOL' rage value INFLOW (CFS) 2.50 2.61	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00	UTE COMPUT estimated a the unit : EFFECTIVE DEPTH(FT) 2.81 2.84	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0	EFFECTIVE VOLUME (AF) 0.267 0.270	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22	2.5 2.4 2.4 2.4 2.4 2.3 2.3 2.3	0. 0. 0. 0. 0. 0. 0. 0.
PULS BA mputed AN OUTF CLOCK TIME (HRS) 	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000	DEL RESUL' H and VOL' rage value INFLOW (CFS) 2.50 2.61 2.73	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00 0.00	UTE COMPUT estimated a the unit : EFFECTIVE DEPTH(FT) 2.81 2.84 2.86	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0 1.0	EFFECTIVE VOLUME (AF) 0.267 0.270 0.272	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94 0.92	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20	2.5 2.4 2.4 2.4 2.4 2.3 2.3 2.3 2.2	0. 0. 0. 0. 0. 0. 0. 0.
PULS BA mputed AN OUTF CLOCK TIME (HRS) 15.817 15.833 15.850 15.867	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000 0.000	DEL RESUL' H and VOL' INFLOW (CFS) 2.50 2.61 2.73 2.86	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00	UTE COMPUT estimated a the unit : EFFECTIVE DEPTH(FT) 2.81 2.84 2.86 2.89	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0 1.0 1.0	EFFECTIVE VOLUME (AF) 0.267 0.270 0.272 0.275	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE:	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94 0.92 0.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20	2.5 2.4 2.4 2.4 2.4 2.3 2.3 2.3 2.2	0. 0. 0. 0. 0. 0. 0. 0.
PULS BA mputed AN OUTF CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000 0.000 0.000 0.000	DEL RESUL' H and VOL' rage value INFLOW (CFS) 2.50 2.61 2.73 2.86 2.99	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00	UTE COMPUT estimated a the unit : EFFECTIVE DEPTH(FT) 2.81 2.84 2.86 2.89 2.92	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0 1.0 1.0 1.0	EFFECTIVE VOLUME (AF) 0.267 0.270 0.272 0.275 0.277	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF INFLOW VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 0.985	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94 0.92 0.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18	2.5 2.4 2.4 2.4 2.3 2.3 2.3 2.2 2.2	0. 0. 0. 0. 0. 0. 0. 0. 0.
PULS BA mputed AN OUTF CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DEL RESUL' H and VOL' rage value INFLOW (CFS) 2.50 2.61 2.73 2.86 2.99 3.12	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	UTE COMPUT estimated a the unit : EFFECTIVE DEPTH(FT) 2.81 2.84 2.86 2.89 2.92 2.95	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0 1.0 1.0 1.0 1.1	EFFECTIVE VOLUME (AF) 0.267 0.270 0.272 0.275 0.275 0.277 0.280	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF INFLOW VOLUME = BASIN STORAGE =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 0.985 0.000	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94 0.92 0.90 AF AF (WITH	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20	2.5 2.4 2.4 2.4 2.3 2.3 2.3 2.2 2.2	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
PULS BA mputed CAN OUTF CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave FILLED (AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DEL RESUL' H and VOL' rage value INFLOW (CFS) 2.50 2.61 2.73 2.86 2.99 3.12 3.24	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.	UTE COMPUT estimated a the unit = EFFECTIVE DEPTH(FT) 2.81 2.84 2.86 2.89 2.92 2.95 2.98	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0 1.0 1.0 1.0 1.0 1.1	EFFECTIVE VOLUME (AF) 0.267 0.270 0.272 0.275 0.275 0.277 0.280 0.283	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 0.985 0.000 0.985	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94 0.92 0.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18	2.5 2.4 2.4 2.4 2.3 2.3 2.3 2.2 2.2	0. 0. 0. 0. 0. 0. 0. 0. 0.
PULS BA mputed CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED (AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DEL RESUL' H and VOL' rage value INFLOW (CFS) 2.50 2.61 2.73 2.86 2.99 3.12 3.24 3.37	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	UTE COMPUT estimated a the unit : EFFECTIVE DEPTH(FT) 2.81 2.84 2.86 2.89 2.92 2.95 2.98 3.01	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0 1.0 1.0 1.0 1.0 1.1 1.1	EFFECTIVE VOLUME (AF) 0.267 0.270 0.272 0.275 0.277 0.280 0.283 0.286	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF INFLOW VOLUME = BASIN STORAGE =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 0.985 0.000	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94 0.92 0.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18	2.5 2.4 2.4 2.4 2.3 2.3 2.3 2.2 2.2	0. 0. 0. 0. 0. 0. 0. 0. 0.
PULS BA mputed AN OUTF CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED (AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DEL RESUL' H and VOL' rage value INFLOW (CFS) 2.50 2.61 2.73 2.86 2.99 3.12 3.24 3.37 3.50	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	UTE COMPUT estimated a the unit : EFFECTIVE DEPTH(FT) 2.81 2.84 2.86 2.89 2.92 2.95 2.98 3.01 3.04	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0 1.0 1.0 1.0 1.1 1.1 1.1	EFFECTIVE VOLUME (AF) 0.267 0.270 0.272 0.275 0.277 0.280 0.283 0.286 0.289	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 0.985 0.000 0.985	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94 0.92 0.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18	2.5 2.4 2.4 2.4 2.3 2.3 2.3 2.2 2.2	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
PULS BA pmputed EAN OUTF CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED (AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DEL RESUL' H and VOL rage value INFLOW (CFS) 2.50 2.61 2.73 2.86 2.99 3.12 3.24 3.37 3.50 3.63	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	UTE COMPUT estimated a the unit = EFFECTIVE DEPTH(FT) 2.81 2.84 2.86 2.89 2.92 2.95 2.98 3.01 3.04 3.08	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1	EFFECTIVE VOLUME (AF) 0.267 0.270 0.272 0.275 0.277 0.280 0.283 0.283 0.286 0.289 0.293	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 0.985 0.000 0.985 0.000	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94 0.92 0.90 AF AF (WITH AF	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18	2.5 2.4 2.4 2.4 2.3 2.3 2.3 2.2 2.2 IALLY FIL	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
PULS BA mputed CAN OUTF CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.983	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED (AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DEL RESUL' H and VOL rage value INFLOW (CFS) 2.50 2.61 2.73 2.86 2.99 3.12 3.24 3.37 3.50 3.63 3.76	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	UTE COMPUT estimated a the unit = EFFECTIVE DEPTH(FT) 2.81 2.84 2.86 2.89 2.92 2.95 2.92 2.95 2.98 3.01 3.04 3.08 3.12	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1	EFFECTIVE VOLUME (AF) 0.267 0.270 0.272 0.275 0.275 0.277 0.280 0.283 0.283 0.286 0.289 0.293 0.296	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 0.985 0.000 0.985 0.000	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94 0.92 0.90 AF AF (WITH AF AF	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18	2.5 2.4 2.4 2.4 2.3 2.3 2.3 2.2 2.2 IALLY FIL	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
-PULS BA omputed EAN OUTF CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.950 15.967 15.983 16.000	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED (AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DEL RESUL' H and VOL rage value INFLOW (CFS) 2.50 2.61 2.73 2.86 2.99 3.12 3.24 3.37 3.50 3.63 3.76 3.89	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	UTE COMPUT estimated a the unit = EFFECTIVE DEPTH(FT) 2.81 2.84 2.86 2.89 2.92 2.95 2.92 2.95 2.98 3.01 3.04 3.08 3.12 3.16	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1	EFFECTIVE VOLUME (AF) 0.267 0.270 0.272 0.275 0.275 0.277 0.280 0.283 0.283 0.283 0.283 0.283 0.286 0.289 0.293 0.296 0.300	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 0.985 0.000 0.985 0.000 0.985 0.000	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94 0.92 0.90 AF AF (WITH AF AF	0.00 0.00	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18	2.5 2.4 2.4 2.4 2.3 2.3 2.3 2.2 2.2 IALLY FIL	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
-PULS BA cmputed EAN OUTF CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.933 15.950 15.967 15.983 16.000 16.017	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED (AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DEL RESUL' H and VOL rage value INFLOW (CFS) 2.50 2.61 2.73 2.86 2.99 3.12 3.24 3.24 3.73 3.50 3.63 3.76 3.89 4.43	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	UTE COMPUT estimated a the unit = EFFECTIVE DEPTH(FT) 2.81 2.84 2.86 2.89 2.92 2.95 2.98 3.01 3.04 3.04 3.08 3.12 3.16 3.20	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1	EFFECTIVE VOLUME (AF) 0.267 0.270 0.272 0.275 0.275 0.277 0.280 0.283 0.283 0.283 0.286 0.283 0.283 0.296 0.300 0.304	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = LOSS VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 0.985 0.000 0.985 0.000 0.985 0.000	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94 0.92 0.90 AF AF (WITH AF AF AF	0.00 0.00	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18	2.5 2.4 2.4 2.4 2.3 2.3 2.3 2.2 2.2 IALLY FIL	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
PULS BA mputed CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.983 15.900 15.917 15.933 15.950 15.967 15.983 16.000 16.017 16.033	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED (AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DEL RESUL' H and VOL rage value INFLOW (CFS) 2.50 2.61 2.73 2.86 2.99 3.12 3.24 3.37 3.50 3.63 3.76 3.89	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	UTE COMPUT estimated a the unit = EFFECTIVE DEPTH(FT) 2.81 2.84 2.86 2.89 2.92 2.95 2.92 2.95 2.98 3.01 3.04 3.08 3.12 3.16	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1	EFFECTIVE VOLUME (AF) 0.267 0.270 0.272 0.275 0.275 0.277 0.280 0.283 0.283 0.283 0.283 0.283 0.286 0.289 0.293 0.296 0.300	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = LOSS VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94 0.92 0.90 AF AF (WITH AF AF AF XF XF	0.00 0.00	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18	2.5 2.4 2.4 2.4 2.3 2.3 2.3 2.2 2.2 HALLY FIL	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
-PULS BA computed EAN OUTF CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.950 15.957 15.983 16.000	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED (AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DEL RESUL' H and VOL rage value INFLOW (CFS) 2.50 2.61 2.73 2.86 2.99 3.12 3.24 3.24 3.73 3.63 3.76 3.89 4.43 5.38	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	UTE COMPUT estimated a the unit = EFFECTIVE DEPTH(FT) 2.81 2.84 2.86 2.89 2.92 2.95 2.98 3.01 3.04 3.04 3.08 3.12 3.16 3.20 3.26	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1	EFFECTIVE VOLUME (AF) 0.267 0.270 0.272 0.275 0.277 0.280 0.283 0.286 0.283 0.286 0.283 0.286 0.283 0.296 0.300 0.304 0.310	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = X************************************	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94 0.92 0.90 AF AF (WITH AF AF AF XF XF	0.00 0.00	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18	2.5 2.4 2.4 2.4 2.3 2.3 2.3 2.2 2.2 HALLY FIL	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
-PULS BA cmputed EAN OUTF CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.983 15.950 15.967 15.983 15.950 15.967 15.983 16.000 16.017 16.033 16.050	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED (AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DEL RESUL' H and VOL rage value INFLOW (CFS) 2.50 2.61 2.73 2.86 2.99 3.12 3.24 3.37 3.50 3.63 3.76 3.89 4.43 5.38 6.33	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	UTE COMPUT estimated a the unit = EFFECTIVE DEPTH(FT) 2.81 2.84 2.86 2.89 2.92 2.95 2.98 3.01 3.04 3.08 3.12 3.16 3.20 3.26 3.33	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1	EFFECTIVE VOLUME (AF) 0.267 0.270 0.272 0.275 0.277 0.280 0.283 0.283 0.283 0.283 0.283 0.293 0.293 0.293 0.296 0.300 0.304 0.310 0.317	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = ************************************	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94 0.92 0.90 AF AF (WITH AF AF AF WITH AF AF	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18	2.5 2.4 2.4 2.4 2.3 2.3 2.2 2.2 IALLY FIL	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
-PULS BA omputed EAN OUTF CLOCK TIME (HRS) 	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED (AF) 0.000	DEL RESUL' H and VOL rage value INFLOW (CFS) 2.50 2.61 2.73 2.86 2.99 3.12 3.24 3.37 3.50 3.63 3.76 3.89 4.43 5.38 6.33 7.29	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	UTE COMPUT estimated a the unit = EFFECTIVE DEPTH(FT) 2.81 2.84 2.86 2.89 2.92 2.95 2.98 3.01 3.04 3.08 3.12 3.16 3.20 3.26 3.33 3.42	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1	EFFECTIVE VOLUME (AF) 0.267 0.270 0.272 0.275 0.275 0.277 0.280 0.283 0.283 0.286 0.283 0.286 0.293 0.293 0.296 0.300 0.304 0.310 0.317 0.325	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = ************************************	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 0.985 0.000 0.000 0.000 0.985 0.000 0.000 0.985 0.000 0.000 0.985 0.000 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.985 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94 0.92 0.90 AF AF (WITH AF AF AF NO TO NOI ROGRAPH<	0.00 0.00	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18	2.5 2.4 2.4 2.4 2.3 2.3 2.2 2.2 IALLY FIL ********** E = 11 (CFS)	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
D-PULS BA Computed MEAN OUTF CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.983 16.000 16.017 16.033 16.050 16.067 16.083	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED (AF) 0.000	DEL RESUL' H and VOL' rage value INFLOW (CFS) 2.50 2.61 2.73 2.86 2.99 3.12 3.24 3.37 3.50 3.63 3.76 3.89 4.43 5.38 6.33 7.29 8.24	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	UTE COMPUT estimated a the unit a EFFECTIVE DEPTH(FT) 2.81 2.84 2.86 2.89 2.92 2.95 2.98 3.01 3.04 3.08 3.12 3.16 3.20 3.26 3.33 3.42 3.52	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1	EFFECTIVE VOLUME (AF) 0.267 0.270 0.272 0.275 0.275 0.277 0.280 0.283 0.283 0.286 0.283 0.286 0.289 0.293 0.293 0.296 0.300 0.304 0.310 0.317 0.325 0.334	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = ************************************	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 0.985 0.000 0.000 0.000 0.985 0.000 0.000 0.985 0.000 0.000 0.985 0.000 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.985 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94 0.92 0.90 AF AF (WITH AF AF AF *****************************	0.00 0.00	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18	2.5 2.4 2.4 2.4 2.3 2.3 2.2 2.2 IALLY FIL ********* E = 11 (CFS) vals.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
D-PULS BA Computed MEAN OUTF CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.983 16.000 16.017 16.033 16.050 16.067 16.083 16.100	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED (AF) 0.000	DEL RESUL' H and VOL' rage value INFLOW (CFS) 2.50 2.61 2.73 2.86 2.99 3.12 3.24 3.37 3.50 3.63 3.76 3.89 4.43 5.38 6.33 7.29 8.24 9.20	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.	UTE COMPUT estimated a the unit a EFFECTIVE DEPTH(FT) 2.81 2.84 2.86 2.89 2.92 2.95 2.98 3.01 3.04 3.08 3.12 3.16 3.20 3.26 3.33 3.42 3.52 3.63	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1	EFFECTIVE VOLUME (AF) 0.267 0.270 0.272 0.275 0.275 0.277 0.280 0.283 0.286 0.289 0.293 0.296 0.300 0.304 0.310 0.317 0.325 0.334 0.345	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = X************************************	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 0.985 0.000 0.000 0.985 0.000 0.985 0.000 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.000 0.985 0.000 0.000 0.985 0.000 0.985 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.000 0.000 0.985 0.0000 0.000000 0.00000 0.0000 0.00000000	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94 0.92 0.90 AF AF (WITH AF AF ********** .00 TO NOI ROGRAPH<<- N ONE-MII is at END ainfall in	0.00 0.00	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18	2.5 2.4 2.4 2.4 2.3 2.3 2.2 2.2 IALLY FIL ********* E = 11 (CFS) vals. as	0 0 0 0 0 0 0 0 0 0
- PULS BA Computed (EAN OUTF CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.983 16.000 16.017 16.033 16.050 16.067 16.083 16.100 16.117	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED (AF) 0.000	DEL RESUL' H and VOL' rage value INFLOW (CFS) 2.50 2.61 2.73 2.86 2.99 3.12 3.24 3.37 3.50 3.63 3.76 3.89 4.43 5.38 6.33 7.29 8.24 9.20 10.15	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	UTE COMPUT estimated a the unit = EFFECTIVE DEPTH(FT) 2.81 2.84 2.86 2.89 2.92 2.95 2.98 3.01 3.04 3.08 3.12 3.16 3.20 3.26 3.33 3.42 3.52 3.63 3.75	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1	EFFECTIVE VOLUME (AF) 0.267 0.270 0.272 0.275 0.277 0.280 0.283 0.286 0.283 0.286 0.289 0.293 0.296 0.300 0.304 0.310 0.317 0.325 0.334 0.345 0.356	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = X************************************	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 0.985 0.000 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.000 0.985 0.0000 0.0000000 0.0000 0.0000 0.0000000 0	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94 0.92 0.90 AF AF (WITH AF AF ********** .00 TO NOI FROGRAPH<< N ONE-MII is at END rainfall in e for ent:	0.00 0.00	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18 00 AF INITI	2.5 2.4 2.4 2.4 2.3 2.3 2.2 2.2 IALLY FIL ********* E = 11 	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
PULS BA mputed CLOCK TIME (HRS) 15.817 15.833 15.850 15.967 15.983 15.950 15.967 15.983 16.000 16.017 16.033 16.000 16.067 16.083 16.100 16.117 16.133	SIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED (AF) 0.000	DEL RESUL' H and VOL rage value INFLOW (CFS) 2.50 2.61 2.73 2.86 2.99 3.12 3.24 3.37 3.50 3.63 3.76 3.89 4.43 5.38 6.33 7.29 8.24 9.20 10.15 11.10	TS(1-MIN UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	UTE COMPUT estimated a the unit : EFFECTIVE DEPTH(FT) 2.81 2.84 2.89 2.92 2.95 2.98 3.01 3.04 3.08 3.12 3.16 3.20 3.26 3.33 3.42 3.52 3.63 3.75 3.89	ATION INT at the cl interval. MEAN OUTFLOW (CFS) 0.9 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1	EFFECTIVE VOLUME (AF) 0.267 0.270 0.270 0.275 0.277 0.280 0.283 0.286 0.283 0.286 0.289 0.293 0.296 0.300 0.304 0.310 0.317 0.325 0.334 0.345 0.356 0.369	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = LOSS VOLUME = ************************************	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 0.985 0.000 0.000 0.985 0.0000 0.000000 0.00000 0.0000 0.0000000 0.000000	1.11 1.09 1.06 1.04 1.02 0.99 0.97 0.94 0.92 0.90 AF AF (WITH AF AF ******************************	0.00 0.00	4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18 00 AF INITI 00 AF INITI 00 IS CODE INTERVALS Juit Interv. s modeled te period.	2.5 2.4 2.4 2.4 2.3 2.3 2.2 2.2 IALLY FIL ********* E = 11 (CFS) vals. as .)	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0

15.800	0.2216	0.92 .	QV.			
				•	•	•
15.817	0.2229	0.94 .	~	•	•	•
15.833	0.2242	0.96 .	Q V.	•	•	•
15.850	0.2255	0.98 .	Q V.			
15.867	0.2269	1.01 .				
15.883	0.2284			•	•	•
			-	•	•	•
15.900	0.2298	1.05 .	2	•	•	•
15.917	0.2313	1.08 .	Q V.	•	•	•
15.933	0.2328	1.11 .	Q V.	•	•	•
15.950	0.2344	1.14 .	QV.			
15.967	0.2360	1.17 .				
				•	•	•
15.983	0.2376	1.20 .	Q V.	•	•	•
16.000	0.2393	1.23 .	Q V.	•	•	•
16.017	0.2411	1.26 .	Q V.	•	•	
16.033	0.2429	1.31 .	QV.			
16.050	0.2448	1.36 .				
16.067	0.2467	1.43 .	Q V	•	•	•
				•	•	•
16.083	0.2488	1.51 .	-	•	•	·
16.100	0.2510	1.60 .	Q V	•	•	•
16.117	0.2533	1.70 .	Q V	•	•	•
16.133	0.2558	1.81 .	QV			
16.150	0.2585	1.94 .	Q V	•		•
				•	•	•
16.167	0.2614	2.12 .	QV	•	•	•
16.183	0.2646	2.33 .	QV	•	•	•
16.200	0.2681	2.51 .	Q			
16.217	0.2718	2.67 .	QV			
16.233	0.2756	2.79 .	.Q			
16.250	0.2796	2.89 .		•	•	•
			.Q	•	•	•
16.267	0.2837	2.96 .	٠Q	•	•	•
16.283	0.2878	3.01 .	.VQ	•	•	•
16.300	0.2920	3.03 .	.VQ			•
16.317	0.2961	3.02 .	. Q			
16.333	0.3003	3.00 .	. Q	-	-	•
				•	•	•
16.350	0.3044	2.98 .	.QV	•	•	•
16.367	0.3085	2.96 .	.QV	•	•	•
16.383	0.3125	2.94 .	.QV	•		
16.400	0.3165	2.91 .	.QV			
16.417	0.3205	2.88 .	.ų̃v			
16.433	0.3244	0.00		•	•	•
			.Q V	•	•	•
16.450	0.3283	2.83 .	.Q V	•	•	•
16.467	0.3322	2.80 .	.Q V	•	•	•
16.483	0.3360	2.77 .	.Q V		•	
16.500	0.3398	2.74 .	QV			
16.517	0.3435	2.71 .	Q V			
16.533	0.3472	2.68 .	~	•	•	•
			~	•	•	•
16.550	0.3509	2.65 .	Q V	•	•	•
16.567	0.3545	2.62 .	Q V	•	•	•
16.583	0.3581	2.60 .	Q V	•		•
16.600	0.3616	2.57 .	Q V		-	
16.617	0.3651	2.54 .	Q V	•	•	•
				•	•	•
16.633	0.3685	2.51 .	Q V	•	•	•
16.650	0.3720	2.48 .	Q. V	•	•	•
16.667	0.3753	2.45 .	Q. V	•	•	•
16.683	0.3787	2.42 .	Q. V			
16.700	0.3820	2.39 .	Q. V			
16.717	0.3852	2.36 .	Q. V		-	-
				•	•	•
16.733	0.3884	2.33 .	Q. V	·	·	•
16.750	0.3916	2.31 .	Q. V	•	•	•

16.767	0.3947	2.28 .	Q.	V				
16.783	0.3978	2.25 .	ç.	V				
16.800	0.4009	2.22 .	Q.	V	•	•	•	

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated Peak Flow Rate	Duration (minutes)
	=======
0%	1009.0
10%	1009.0
20%	1009.0
30%	860.0
40%	620.0
50%	435.0
60%	300.0
70%	210.0
80%	145.0
90%	85.0

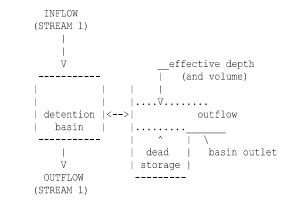
TOTAL CATCHMENT SOIL-LOSS VOLUME (ACRE-FEET) = _____ FLOOD ROUTING ANALYSIS USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986) (c) Copyright 1989-2017 Advanced Engineering Software (aes) Ver. 21.1 Release Date: 01/17/2017 License ID 1419 Analysis prepared by: * OAK GROVE DEVELOPMENT * AREA C 25-YEAR HC PROPOSED CONDITION * SMALL AREA HYDROGRAPH MODEL - JULY 2017 FILE NAME: OAKC25.DAT TIME/DATE OF STUDY: 21:50 12/03/2017 The Small Area Unit Hydrograph Procedures in Section J of the Hydrology Manual provides estimates of runoff hydrograph and runoff volume for watersheds whose time of concentration is less than 25 minutes. The PROGRAM User should check the applicability of using the small area unit hydrograph procedures, and follow the guidelines in Sections J and K.5 in complex watershed modeling. FLOW PROCESS FROM NODE 20.00 TO NODE 23.00 IS CODE = 1.2 _____ >>>>SUBAREA RUNOFF (SMALL AREA UNIT-HYDROGRAPH ANALYSIS) <<<<< (SMALL AREA UNIT-HYDROGRAPH ADDED TO STREAM #1) RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90 TOTAL CATCHMENT AREA(ACRES) = 5.25 SOIL-LOSS RATE, Fm, (INCH/HR) = 0.120 LOW LOSS FRACTION = 0.361TIME OF CONCENTRATION(MIN.) = 9.18 SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED: RETURN FREQUENCY (YEARS) = 255-MINUTE POINT RAINFALL VALUE(INCHES) = 0.40 30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.87 1-HOUR POINT RAINFALL VALUE(INCHES) = 1.15 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.94 6-HOUR POINT RAINFALL VALUE (INCHES) = 2.71 24-HOUR POINT RAINFALL VALUE (INCHES) = 4.49 _____ TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = 1.26

0.71

HYDROGRAPH IN ONE-MINUTE UNIT INTERVALS(CFS) (Notes: Time indicated is at END of Each Unit Intervals. Peak 5-minute rainfall intensity is modeled as a constant value for entire 5-minute period.)

TIME (HRS)	VOLUME (AF)	Q(CFS) 0.	3.9	7.8	11.6	15.5
15.800	0.6285	3.09 .	Q .	V		
15.817	0.6330	3.24 .	Q.	V	•	•
15.833	0.6377	3.40 .	Q.	V	•	•
15.850	0.6426	3.56 .	Q.	V		•
15.867	0.6477	3.72 .	Q.	V		
15.883	0.6530	3.88 .	Q.	V	•	
15.900	0.6586	4.03 .	Q	V	•	
15.917	0.6644	4.19 .	Q	.V		
15.933	0.6704	4.35 .	.Q	.V		
15.950	0.6766	4.51 .	.Q	.V		
15.967	0.6830	4.67 .	. Q	.v		
15.983	0.6897	4.83 .	. Q	.v		
16.000	0.6965	4.99 .	. Q	. v		
16.017	0.7043	5.64 .	. 0	. V		_
16.033	0.7136	6.78 .		Q . V		
16.050	0.7245	7.91 .		QV		
16.067	0.7370	9.05 .		, Q		
16.083	0.7510	10.19 .	•	• × • V	0 .	•
16.100	0.7666	11.33 .	•	. v	~	•
16.117	0.7838	12.46 .	•	. v	~	•
16.133	0.8025	13.60 .	•		· v v .	Q .
16.155	0.8228	14.74 .	•	•	v . V .	
		15.51 .	•	•	v . V .	Q.
16.167	0.8442		•	•		Q
16.183	0.8630	13.67 .	•	•		ç.
16.200	0.8799	12.27 .	•	•	V .Q	•
16.217	0.8949	10.87 .	•	•	Q.	•
16.233	0.9080	9.48 .	•	. Q		·
16.250	0.9191	8.08 .	•	Q	V.	•
16.267	0.9283	6.68 .	•	ç.	V.	•
16.283	0.9356	5.29 .	• Q	•	ν.	•
16.300	0.9409	3.89 .	Q	•	V.	•
16.317	0.9447	2.76 .	Q.	•	V	•
16.333	0.9483	2.58 .	Q.	•	V	•
16.350	0.9517	2.49 .	ç.	•	V	•
16.367	0.9550	2.39 .	Q.	•	V	•
16.383	0.9582	2.29 .	Q.	•	V	•
16.400	0.9612	2.20 .	Q.	•	V	•
16.417	0.9641	2.10 .	Q.	•	V	
16.433	0.9669	2.01 .	Q.		V	
16.450	0.9695	1.91 .	Q.		V	
16.467	0.9720	1.82 .	Q.		V	
16.483	0.9745	1.79 .	Q.		.V	
16.500	0.9769	1.76 .	ç.		.V	
16.517	0.9793	1.73 .	õ.		.v	
16.533	0.9816	1.70 .	Q.		.V	

16.550	0.9839	1.68	Q		.V	•	
16.567	0.9862	1.65	Q	•	.V		
16.583	0.9884	1.62	Q		.V		
16.600	0.9906	1.59	Q		.V		
16.617	0.9928	1.57	Q		.V		
16.633	0.9949	1.54	Q		.V		
16.650	0.9970	1.50	Q		.V		
16.667	0.9990	1.47	Q		.V		
16.683	1.0010	1.44	Q		.V		
16.700	1.0029	1.41	Q		.V		
16.717	1.0048	1.38	Q		. V		
16.733	1.0067	1.35	Q		. V		
16.750	1.0085	1.32	Q		. V		
16.767	1.0103	1.29	Q		. V		
16.783	1.0120	1.26	Q		. V		
16.800	1.0137	1.24	Q		. V		


TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated	Duration
Peak Flow Rate	(minutes)
0% 10% 20% 30% 40% 50% 60%	$\begin{array}{c}$
70%	40.0
80%	25.0
90%	10.0

>>>>FLOW-THROUGH DETENTION BASIN ROUTING MODEL APPLIED TO STREAM #1<<<<<

3 -

													0.49
							16.200	0.000	12.27	0.00	5.28	3.6	
_							16.217	0.000	10.87	0.00	5.39	3.8	0.50
	JNOFF HYDROGRAF			IBER 1			16.233	0.000	9.48	0.00	5.47	3.9	0.51
	A FLOW-THROUGH						16.250	0.000	8.08	0.00	5.53	4.1	0.51
	ED BASIN CONDIT)WS:			16.267	0.000	6.68	0.00	5.57	4.1	0.52
	STORAGE (AF) =	0.000		0 000			16.283	0.000	5.29	0.00	5.59	4.2	0.5
	FIED DEAD STORA			0.000		0.000	16.300	0.000	3.89	0.00	5.59	4.2	0.5
	FIED EFFECTIVE					0.000	16.317	0.000	2.76	0.00	5.57	4.2	0.5
DETEN:	FION BASIN CONS	STANT LOSS	RATE (CF	(S) = 0.1	00		16.333	0.000	2.58	0.00	5.54	4.1	0.5
							16.350	0.000	2.49	0.00	5.52	4.1	0.5
					-		16.367	0.000	2.39	0.00	5.49	4.1	0.5
BASIN DI	EPTH VERSUS OUT	FLOW AND	STORAGE	INFORMATIO	N:		16.383	0.000	2.29	0.00	5.47	4.0	0.5
							16.400	0.000	2.20	0.00	5.44	4.0	0.5
INTERVA		OUTFLOW		RAGE			16.417	0.000	2.10	0.00	5.41	3.9	0.5
NUMBER	. ,	(CFS)		AF)			16.433	0.000	2.01	0.00	5.38	3.9	0.5
1		0.00		.000			16.450	0.000	1.91	0.00	5.35	3.9	0.5
2		0.14		.090			16.467	0.000	1.82	0.00	5.32	3.8	0.4
3		0.35		.200			16.483	0.000	1.79	0.00	5.29	3.8	0.4
4	4.00	1.96		.380			16.500	0.000	1.76	0.00	5.26	3.7	0.4
5	6.00	4.74		.560			16.517	0.000	1.73	0.00	5.23	3.7	0.4
6	8.10	10.56		.750			16.533	0.000	1.70	0.00	5.20	3.6	0.4
7	10.00	17.22		.930			16.550	0.000	1.68	0.00	5.17	3.6	0.4
8	12.10	25.78		.130			16.567	0.000	1.65	0.00	5.14	3.6	0.4
9	14.00	38.50	1	.310			16.583	0.000	1.62	0.00	5.11	3.5	0.4
							16.600	0.000	1.59	0.00	5.08	3.5	0.4
							16.617	0.000	1.57	0.00	5.05	3.4	0.4
							16.633	0.000	1.54	0.00	5.03	3.4	0.4
	ASIN ROUTING MC			UTE COMPUTA			16.650	0.000	1.50	0.00	5.00	3.4	0.4
ote: Computed							16.667	0.000	1.47	0.00	4.97	3.3	
	EFFECTIVE DEPI FLOW is the ave						16.683	0.000	1.44	0.00	4.94	3.3	0.4 0.4
MEAN OUTH					interval.		16.683 16.700	0.000 0.000	1.44 1.41	0.00 0.00	4.94 4.91	3.3 3.2	0.4 0.4
MEAN OUTH CLOCK	FLOW is the ave	erage valu	e during	f the unit :	interval. MEAN)	16.683 16.700 16.717	0.000 0.000 0.000	1.44 1.41 1.38	0.00 0.00 0.00	4.94 4.91 4.88	3.3 3.2 3.2	0.4 0.4 0.4
MEAN OUTH CLOCK TIME	FLOW is the ave DEAD-STORAGE	erage valu INFLOW	e during LOSS	the unit : EFFECTIVE	interval. MEAN OUTFLOW) EFFECTIVE	16.683 16.700 16.717 16.733	0.000 0.000 0.000 0.000	1.44 1.41 1.38 1.35	0.00 0.00 0.00 0.00	4.94 4.91 4.88 4.86	3.3 3.2 3.2 3.2	0.4 0.4 0.4 0.4
MEAN OUTH CLOCK	FLOW is the ave DEAD-STORAGE FILLED(AF)	erage valu INFLOW (CFS)	e during LOSS (CFS)	the unit : EFFECTIVE DEPTH(FT)	interval. MEAN OUTFLOW (CFS)) EFFECTIVE VOLUME (AF)	16.683 16.700 16.717 16.733 16.750	0.000 0.000 0.000 0.000 0.000	1.44 1.41 1.38 1.35 1.32	0.00 0.00 0.00 0.00 0.00	4.94 4.91 4.88 4.86 4.83	3.3 3.2 3.2 3.2 3.1	0.4 0.4 0.4 0.4 0.4
MEAN OUT CLOCK TIME (HRS)	FLOW is the ave DEAD-STORAGE FILLED(AF)	rage valu INFLOW (CFS)	e during LOSS (CFS)	g the unit : EFFECTIVE DEPTH(FT)	interval. MEAN OUTFLOW (CFS)) EFFECTIVE VOLUME (AF) 	16.683 16.700 16.717 16.733 16.750 16.767	0.000 0.000 0.000 0.000 0.000 0.000	1.44 1.41 1.38 1.35 1.32 1.29	0.00 0.00 0.00 0.00 0.00 0.00	4.94 4.91 4.88 4.86 4.83 4.80	3.3 3.2 3.2 3.2 3.1 3.1	0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.000	INFLOW (CFS) 3.24	e during LOSS (CFS) 0.00	EFFECTIVE DEPTH(FT) 3.29	MEAN OUTFLOW (CFS) 1.3) EFFECTIVE VOLUME (AF) 	16.683 16.700 16.717 16.733 16.750 16.767 16.783	0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.44 1.41 1.38 1.35 1.32 1.29 1.26	0.00 0.00 0.00 0.00 0.00 0.00 0.00	4.94 4.91 4.88 4.86 4.83 4.80 4.77	3.3 3.2 3.2 3.1 3.1 3.1	0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000	INFLOW (CFS) 3.24 3.40	e during LOSS (CFS) 0.00 0.00	g the unit : EFFECTIVE DEPTH(FT) 3.29 3.32	MEAN OUTFLOW (CFS) 1.3 1.4) EFFECTIVE VOLUME(AF) 0.313 0.316	16.683 16.700 16.717 16.733 16.750 16.767	0.000 0.000 0.000 0.000 0.000 0.000	1.44 1.41 1.38 1.35 1.32 1.29	0.00 0.00 0.00 0.00 0.00 0.00	4.94 4.91 4.88 4.86 4.83 4.80	3.3 3.2 3.2 3.2 3.1 3.1	0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000	INFLOW (CFS) 3.24 3.40 3.56	e during LOSS (CFS) 0.00 0.00 0.00	g the unit : EFFECTIVE DEPTH(FT) 3.29 3.32 3.35	MEAN OUTFLOW (CFS) 1.3 1.4 1.4) EFFECTIVE VOLUME(AF) 0.313 0.316 0.319	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.44 1.41 1.38 1.35 1.32 1.29 1.26	0.00 0.00 0.00 0.00 0.00 0.00 0.00	4.94 4.91 4.88 4.86 4.83 4.80 4.77	3.3 3.2 3.2 3.1 3.1 3.1	0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000 0.000	INFLOW (CFS) 3.24 3.40 3.56 3.72	e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00	g the unit : EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39	MEAN OUTFLOW (CFS) 1.3 1.4 1.4 1.4) EFFECTIVE VOLUME(AF) 0.313 0.316 0.319 0.322	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF 3	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE:	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24	0.00 0.00 0.00 0.00 0.00 0.00 0.00	4.94 4.91 4.88 4.86 4.83 4.80 4.77	3.3 3.2 3.2 3.1 3.1 3.1	0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000 0.000 0.000	INFLOW (CFS) 3.24 3.40 3.56 3.72 3.88	e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00	g the unit : EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39 3.42	MEAN OUTFLOW (CFS) 1.3 1.4 1.4 1.4 1.4) EFFECTIVE VOLUME (AF) 0.313 0.316 0.319 0.322 0.325	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 1.255	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.94 4.91 4.88 4.86 4.83 4.80 4.77 4.75	3.3 3.2 3.2 3.1 3.1 3.1 3.0	0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	INFLOW (CFS) 3.24 3.56 3.72 3.88 4.03	e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	g the unit : EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39 3.42 3.46	MEAN OUTFLOW (CFS) 1.3 1.4 1.4 1.4 1.4 1.5 1.5) EFFECTIVE VOLUME (AF) 0.313 0.316 0.319 0.322 0.325 0.329	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 1.255 0.000	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.94 4.91 4.88 4.86 4.83 4.80 4.77	3.3 3.2 3.2 3.1 3.1 3.1 3.0	0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	INFLOW (CFS) 3.24 3.40 3.56 3.72 3.88 4.03 4.19	e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	g the unit : EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39 3.42 3.46 3.50	MEAN OUTFLOW (CFS) 1.3 1.4 1.4 1.4 1.5 1.5 1.5) EFFECTIVE VOLUME (AF) 0.313 0.316 0.319 0.322 0.325 0.329 0.329 0.332	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 1.255 0.000 1.255	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.94 4.91 4.88 4.86 4.83 4.80 4.77 4.75	3.3 3.2 3.2 3.1 3.1 3.1 3.0	0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	INFLOW (CFS) 3.24 3.40 3.56 3.72 3.88 4.03 4.19 4.35	e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	g the unit : EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39 3.42 3.46 3.50 3.54	MEAN OUTFLOW (CFS)) EFFECTIVE VOLUME (AF) 0.313 0.316 0.319 0.322 0.325 0.329 0.322 0.332 0.336	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 1.255 0.000	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.94 4.91 4.88 4.86 4.83 4.80 4.77 4.75	3.3 3.2 3.2 3.1 3.1 3.1 3.0	0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	INFLOW (CFS) 3.24 3.40 3.56 3.72 3.88 4.03 4.19	e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	g the unit : EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39 3.42 3.46 3.50	MEAN OUTFLOW (CFS) 1.3 1.4 1.4 1.4 1.5 1.5 1.5) EFFECTIVE VOLUME (AF) 0.313 0.316 0.319 0.322 0.325 0.329 0.329 0.332	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 1.255 0.000 1.255	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.94 4.91 4.88 4.86 4.83 4.80 4.77 4.75	3.3 3.2 3.2 3.1 3.1 3.1 3.0	0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	INFLOW (CFS) 3.24 3.40 3.56 3.72 3.88 4.03 4.19 4.35	e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	g the unit : EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39 3.42 3.46 3.50 3.54	MEAN OUTFLOW (CFS)) EFFECTIVE VOLUME (AF) 0.313 0.316 0.319 0.322 0.325 0.329 0.322 0.332 0.336	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5TORAGE: 1.255 0.000 1.255 0.000	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24 0 AF 0 AF (WITH 0 AF	0.00 0.00 0.00 0.00 0.00 0.00 0.00	4.94 4.91 4.88 4.86 4.83 4.80 4.77 4.75	3.3 3.2 3.2 3.1 3.1 3.1 3.0	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	INFLOW (CFS) 3.24 3.40 3.56 3.72 3.88 4.03 4.19 4.35 4.51 4.67 4.83	e during LOSS (CFS) 0.000 0.00	EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39 3.42 3.46 3.50 3.54 3.58 3.63 3.67	MEAN OUTFLOW (CFS) 1.3 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.6 1.6) EFFECTIVE VOLUME (AF) 0.313 0.316 0.319 0.322 0.325 0.329 0.329 0.332 0.336 0.340 0.345 0.349	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF 3 INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5TORAGE: 1.255 0.0000	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24 AF (WITH 5 AF 0 AF	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	4.94 4.91 4.88 4.86 4.83 4.80 4.77 4.75	3.3 3.2 3.2 3.1 3.1 3.1 3.0 HALLY FIL	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	INFLOW (CFS) 3.24 3.40 3.56 3.72 3.88 4.03 4.19 4.35 4.51 4.67	e during LOSS (CFS) 0.000 0.00	g the unit : EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39 3.42 3.46 3.50 3.54 3.58 3.63	MEAN OUTFLOW (CFS) 1.3 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.6 1.6 1.6) EFFECTIVE VOLUME (AF) 0.313 0.316 0.319 0.322 0.325 0.329 0.329 0.332 0.336 0.340 0.345 0.349	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5TORAGE: 1.255 0.0000	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24 AF (WITH 5 AF 0 AF	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	4.94 4.91 4.88 4.86 4.83 4.80 4.77 4.75	3.3 3.2 3.2 3.1 3.1 3.1 3.0 HALLY FIL	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.951 15.953 15.950 15.967 15.983 16.000 16.017	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	INFLOW (CFS) 3.24 3.40 3.56 3.72 3.88 4.03 4.19 4.35 4.51 4.67 4.83	e during LOSS (CFS) 0.000 0.00	EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39 3.42 3.46 3.50 3.54 3.58 3.63 3.67	MEAN OUTFLOW (CFS) 1.3 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.7) EFFECTIVE VOLUME (AF) 0.313 0.316 0.319 0.322 0.325 0.329 0.329 0.332 0.336 0.340 0.345 0.349	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF 3 INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5TORAGE: 1.255 0.0000	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24 AF (WITH 5 AF 0 AF	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	4.94 4.91 4.88 4.86 4.83 4.80 4.77 4.75	3.3 3.2 3.2 3.1 3.1 3.1 3.0 HALLY FIL	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.950 15.967 15.983 16.000	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	INFLOW (CFS) 3.24 3.40 3.56 3.72 3.88 4.03 4.19 4.35 4.51 4.67 4.83 4.99	e during LOSS (CFS) 0.000 0.00	EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39 3.42 3.46 3.50 3.54 3.58 3.63 3.67 3.72	MEAN OUTFLOW (CFS) 1.3 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.7 1.7) EFFECTIVE VOLUME (AF) 0.313 0.316 0.319 0.322 0.325 0.329 0.329 0.332 0.336 0.340 0.345 0.349 0.353	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF 3 INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24 0 AF 0 AF (WITH 6 AF 0 AF 8.00 TO NO	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	4.94 4.91 4.88 4.86 4.83 4.80 4.77 4.75	3.3 3.2 3.2 3.1 3.1 3.1 3.0 HALLY FIL	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.951 15.953 15.950 15.967 15.983 16.000 16.017	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	INFLOW (CFS) 3.24 3.40 3.56 3.72 3.88 4.03 4.19 4.35 4.51 4.67 4.83 4.99 5.64	e during LOSS (CFS) 0.000 0.00	g the unit : EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39 3.42 3.46 3.50 3.54 3.58 3.63 3.67 3.72 3.78	MEAN OUTFLOW (CFS) 1.3 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.7 1.7) EFFECTIVE VOLUME (AF) 0.313 0.316 0.319 0.322 0.325 0.329 0.322 0.336 0.340 0.345 0.349 0.353 0.359	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = LOSS VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 1.255 0.000 1.255 0.000 0.000 ************************	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24 AF (WITH 5 AF 0 AF (WITH 5 AF 8.00 TO NO	0.00 0.00	4.94 4.91 4.88 4.86 4.83 4.80 4.77 4.75	3.3 3.2 3.2 3.1 3.1 3.1 3.0 HALLY FIL ************************************	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.951 15.953 15.950 15.967 15.983 16.000 16.017 16.033	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	INFLOW (CFS) 3.24 3.40 3.56 3.72 3.88 4.03 4.19 4.35 4.51 4.67 4.83 4.99 5.64 6.78	e during LOSS (CFS) 0.000 0.00 0.00 0.00 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39 3.42 3.46 3.50 3.54 3.58 3.63 3.67 3.72 3.78 3.85	MEAN OUTFLOW (CFS) 1.3 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.7 1.7 1.7) EFFECTIVE VOLUME (AF) 0.313 0.316 0.319 0.322 0.325 0.329 0.332 0.336 0.340 0.345 0.349 0.353 0.359 0.366	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF 3 INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = ************************************	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 1.255 0.000 1.255 0.000 0.000 ************************	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24 AF (WITH 5 AF 0 AF (WITH 5 AF 8.00 TO NO	0.00 0.00	4.94 4.91 4.88 4.86 4.83 4.80 4.77 4.75	3.3 3.2 3.2 3.1 3.1 3.1 3.0 HALLY FIL ************************************	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.951 15.967 15.983 16.000 16.017 16.033 16.050	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	INFLOW (CFS) 3.24 3.40 3.56 3.72 3.88 4.03 4.19 4.35 4.51 4.67 4.83 4.99 5.64 6.78 7.91	e during LOSS (CFS) 0.000 0.00 0.00 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39 3.42 3.46 3.50 3.54 3.58 3.63 3.67 3.72 3.78 3.85 3.94	MEAN OUTFLOW (CFS) 1.3 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.8 1.9) EFFECTIVE VOLUME (AF) 0.313 0.316 0.319 0.322 0.325 0.329 0.332 0.336 0.340 0.345 0.349 0.345 0.349 0.353 0.359 0.366 0.374	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF 3 INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = ************************************	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 1.255 0.000 0.000 0.255 0.000 0.000 0.000 0.000 0.000 0.255 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000000 0.0000 0.0000	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24 AF (WITH 5 AF 0 AF (WITH 5 AF 8.00 TO NO	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	4.94 4.91 4.88 4.86 4.83 4.80 4.77 4.75	3.3 3.2 3.2 3.1 3.1 3.1 3.0 HALLY FIL *********** E = 11	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.983 16.000 16.017 16.033 16.050 16.050 16.067	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	INFLOW (CFS) 3.24 3.40 3.56 3.72 3.88 4.03 4.19 4.35 4.51 4.67 4.83 4.99 5.64 6.78 7.91 9.05	e during LOSS (CFS) 0.000 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39 3.42 3.46 3.50 3.54 3.58 3.63 3.67 3.72 3.78 3.85 3.94 4.04	MEAN OUTFLOW (CFS) 1.3 1.4 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.8 1.9 2.0) EFFECTIVE VOLUME (AF) 0.313 0.316 0.319 0.322 0.325 0.329 0.322 0.336 0.340 0.345 0.349 0.353 0.359 0.359 0.366 0.374 0.384	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF 3 INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = ************************************	0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 1.255 0.000 0.000 1.255 0.000 0.000 1.255 0.000 1.255 0.000 1.255 0.000 0.000 1.255 0.0000 1.255 0.000 0.000 1.255 0.000 0.000 1.255 0.000 0.000 1.255 0.000 0.000 0.000 1.255 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000 0.00000000	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24 0 AF (WITH 5 AF 0 AF 0 AF 0 AF 0 AF 0 OTO NO 0 OTO NO 0 OTO MIN	0.00 0.00	4.94 4.91 4.88 4.86 4.83 4.80 4.77 4.75 00 AF INIT: 00 AF INIT: 00 IS CODE	3.3 3.2 3.2 3.1 3.1 3.1 3.0 IALLY FIL ********** E = 11 (CFS)	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.983 16.000 16.017 16.033 16.050 16.067 16.083	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	INFLOW (CFS) 3.24 3.40 3.56 3.72 3.88 4.03 4.19 4.35 4.51 4.67 4.83 4.99 5.64 6.78 7.91 9.05 10.19	e during LOSS (CFS) 0.000 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000000	g the unit : EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39 3.42 3.46 3.50 3.54 3.50 3.54 3.58 3.63 3.67 3.72 3.78 3.85 3.94 4.04 4.17	MEAN OUTFLOW (CFS) 1.3 1.4 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.8 1.9 2.0 2.1) EFFECTIVE VOLUME (AF) 0.313 0.316 0.319 0.322 0.325 0.329 0.322 0.336 0.340 0.345 0.345 0.349 0.353 0.359 0.366 0.374 0.384 0.395	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = ************************************	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 1.255 0.000 1.255 0.000 1.255 0.000 1.255 0.000 MBER 1 HYI DRE 1 HYI DROGRAPH I indicated	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24 AF (WITH AF (WITH AF AF AF AF AF (WITH (WITH AF (WITH (WITH AF (WITH)(WITH (WITH)(WIT	0.00 0.00	4.94 4.91 4.88 4.86 4.83 4.80 4.77 4.75 00 AF INIT: 00 AF INIT: 00 IS CODE UNTERVALS UNIT INTERVALS	3.3 3.2 3.2 3.1 3.1 3.1 3.0 IALLY FIL ********** E = 11 (CFS) vals.	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.983 16.000 16.017 16.033 16.050 16.067 16.083 16.100 16.117	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	INFLOW (CFS) 3.24 3.40 3.56 3.72 3.88 4.03 4.19 4.35 4.51 4.67 4.83 4.99 5.64 6.78 7.91 9.05 10.19 11.33 12.46	e during LOSS (CFS) 0.000 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	g the unit : EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39 3.42 3.46 3.50 3.54 3.58 3.63 3.67 3.72 3.78 3.85 3.94 4.04 4.17 4.30 4.46	MEAN OUTFLOW (CFS) 1.3 1.4 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.8 1.9 2.0 2.1 2.3 2.5) EFFECTIVE VOLUME (AF) 0.313 0.316 0.319 0.322 0.325 0.329 0.322 0.336 0.340 0.345 0.349 0.345 0.349 0.353 0.359 0.366 0.374 0.384 0.395 0.407 0.421	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF 3 INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = LOSS VOLUME = STREAM NUI	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24 0 AF (WITH 0 AF (WITH 0 AF 0 AF 0 AF 0 AF 0 AF 0 AF 0 AF 0 AF	0.00 0.00	4.94 4.91 4.88 4.86 4.83 4.80 4.77 4.75 00 AF INIT: 00 AF INIT: 00 IS CODE INTERVALS UNIT INTERVALS	3.3 3.2 3.2 3.1 3.1 3.1 3.0 IALLY FIL ********* E = 11 	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.983 16.000 16.017 16.033 16.000 16.017 16.083 16.100 16.117 16.133	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	INFLOW (CFS) 3.24 3.40 3.56 3.72 3.88 4.03 4.19 4.35 4.51 4.67 4.83 4.99 5.64 6.78 7.91 9.05 10.19 11.33 12.46 13.60	e during LOSS (CFS) 0.000 0.00	g the unit : EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39 3.42 3.46 3.50 3.54 3.58 3.63 3.67 3.72 3.78 3.85 3.94 4.04 4.17 4.30 4.46 4.62	MEAN OUTFLOW (CFS) 1.3 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.8 1.9 2.0 2.1 2.3 2.5 2.7) EFFECTIVE VOLUME (AF) 0.313 0.316 0.319 0.322 0.325 0.329 0.322 0.336 0.340 0.345 0.349 0.345 0.349 0.353 0.349 0.353 0.359 0.366 0.374 0.384 0.395 0.407 0.421 0.436	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF 3 INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = LOSS VOLUME = STREAM NUI	0.000 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24 0 AF (WITH 0 AF (WITH 0 AF 0 AF	0.00 0.00	4.94 4.91 4.88 4.86 4.83 4.80 4.77 4.75 00 AF INIT: 00 AF INIT: 00 IS CODE INTERVALS Unit Intervals INTERVALS	3.3 3.2 3.2 3.1 3.1 3.1 3.0 IALLY FIL E = 11 (CFS) Vals. as .)	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 LED)
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.983 16.000 16.017 16.033 16.050 16.0617 16.083 16.100 16.117 16.133 16.150	FLOW is the ave DEAD-STORAGE FILLED (AF) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	INFLOW (CFS) 3.24 3.40 3.56 3.72 3.88 4.03 4.19 4.35 4.51 4.67 4.83 4.99 5.64 6.78 7.91 9.05 10.19 11.33 12.46 13.60 14.74	e during LOSS (CFS) 0.00	g the unit : EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39 3.42 3.46 3.50 3.54 3.58 3.63 3.67 3.72 3.78 3.85 3.94 4.04 4.17 4.30 4.46 4.62 4.80	MEAN OUTFLOW (CFS) 1.3 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.8 1.9 2.0 2.1 2.3 2.5 2.7 3.0) EFFECTIVE VOLUME (AF) 0.313 0.316 0.319 0.322 0.325 0.329 0.325 0.329 0.332 0.336 0.340 0.345 0.349 0.345 0.349 0.353 0.359 0.366 0.374 0.384 0.395 0.407 0.421 0.436 0.452	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF 3 INFLOW VOLUME = BASIN STORACE = OUTFLOW VOLUME = LOSS VOLUME = LOSS VOLUME = ************************************	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 1.255 0.000 1.25 0.000 1.255 0.000	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24 0 AF (WITH 0 AF (WITH 0 AF 0 AF	0.00 0.00	4.94 4.91 4.88 4.86 4.83 4.80 4.77 4.75 00 AF INIT: 00 AF INIT: 00 IS CODE INTERVALS Unit Intervals	3.3 3.2 3.2 3.1 3.1 3.1 3.0 IALLY FIL E = 11 (CFS) vals. as .)	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 LED)
MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.983 16.000 16.017 16.033 16.000 16.017 16.083 16.100 16.117 16.133	FLOW is the ave DEAD-STORAGE FILLED(AF) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	INFLOW (CFS) 3.24 3.40 3.56 3.72 3.88 4.03 4.19 4.35 4.51 4.67 4.83 4.99 5.64 6.78 7.91 9.05 10.19 11.33 12.46 13.60	e during LOSS (CFS) 0.000 0.00	g the unit : EFFECTIVE DEPTH(FT) 3.29 3.32 3.35 3.39 3.42 3.46 3.50 3.54 3.58 3.63 3.67 3.72 3.78 3.85 3.94 4.04 4.17 4.30 4.46 4.62	MEAN OUTFLOW (CFS) 1.3 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.8 1.9 2.0 2.1 2.3 2.5 2.7) EFFECTIVE VOLUME (AF) 0.313 0.316 0.319 0.322 0.325 0.329 0.322 0.336 0.340 0.345 0.349 0.345 0.349 0.353 0.349 0.353 0.359 0.366 0.374 0.384 0.395 0.407 0.421 0.436	16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF 3 INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = LOSS VOLUME = STREAM HYI (Notes: Time = Peak 3 a con:	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 1.255 0.000 0.000 1.255 0.000	1.44 1.41 1.38 1.35 1.32 1.29 1.26 1.24 0 AF (WITH 0 AF (WITH 0 AF (WITH 0 AF 0 O TO NO 0 O TO NO 0 AF 0 O TO NO 0 O TO N	0.00 0.00	4.94 4.91 4.88 4.86 4.83 4.80 4.77 4.75 00 AF INIT: 00 AF INIT: 00 IS CODE INTERVALS Unit Intervision S.0	3.3 3.2 3.2 3.1 3.1 3.1 3.0 IALLY FIL E = 11 (CFS) vals. as .)	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

15.800	0.3181	1.33 .	Q V		
			~	• •	•
15.817	0.3200	1.35 .	Q V	• •	•
15.833	0.3219	1.37 .	Q V	• •	•
15.850	0.3238	1.40 .	Q V		
15.867	0.3257	1.43 .	Q V		
15.883	0.3277	1.46 .	õ V		
15.900	0.3298		*	• •	•
			2	• •	•
15.917	0.3319	1.52 .	Q V	• •	•
15.933	0.3340	1.55 .	Q V	· ·	•
15.950	0.3362	1.59 .	Q V		
15.967	0.3385	1.62 .	Q V		
15.983	0.3407	1.66 .	Q V	• •	•
				• •	•
16.000	0.3431	1.70 .	~	• •	•
16.017	0.3455	1.75 .	Q.V.	• •	•
16.033	0.3480	1.80 .	Q.V		
16.050	0.3505	1.87 .	Q.V		
16.067	0.3532	1.96 .	Q.V		
16.083	0.3561	2.10 .	Q.V		•
				• •	•
16.100	0.3593	2.29 .	Q.V	• •	•
16.117	0.3627	2.49 .	Q.V	· ·	•
16.133	0.3665	2.71 .	QV		
16.150	0.3705	2.95 .	.Q		•
16.167	0.3749	3.21 .	.VQ		
16.183	0.3797	3.45 .	. VQ	• •	•
				• •	•
16.200	0.3847	3.65 .	.VQ	• •	•
16.217	0.3900	3.81 .	.VQ	• •	•
16.233	0.3954	3.95 .	.VQ		
16.250	0.4010	4.05 .	.VQ		
16.267	0.4067	4.12 .	.V Q		
16.283	0.4124		• · • • •	• •	•
			-	• •	•
16.300	0.4181	4.17 .	. V Q	• •	•
16.317	0.4239	4.15 .	. V Q	• •	•
16.333	0.4295	4.12 .	. V Q		
16.350	0.4352	4.09 .	. V Q		
16.367	0.4407	4.05 .	. V Q		
16.383	0.4463	4.02 .	. V Q		•
				• •	•
16.400	0.4517	3.98 .	. VQ	• •	•
16.417	0.4572	3.94 .	. VQ		•
16.433	0.4625	3.90 .	. VQ		•
16.450	0.4679	3.86 .	. VQ		
16.467	0.4731	3.82 .	• Q		
16.483	0.4783	3.78 .	· 2	•	•
16.500	0.4835	3.73 .		• •	•
			. QV	• •	•
16.517	0.4885	3.69 .	. QV	• •	•
16.533	0.4936	3.65 .	. QV	• •	•
16.550	0.4985	3.61 .	. QV		
16.567	0.5035	3.57 .	. Q V		
16.583	0.5083	3.53 .	. Q V		
16.600					•
	0.5131	3.49 .	. Q V	• •	•
16.617	0.5179	3.45 .	. Q V	• •	•
16.633	0.5226	3.41 .	. Q V		•
16.650	0.5272	3.37 .	. Q V		•
16.667	0.5318	3.33 .	. Q V		
16.683	0.5363	3.29 .	. Q V		
16.700	0.5408	3.25 .			•
				• •	•
16.717	0.5452	3.21 .	.Q V	• •	•
16.733	0.5496	3.17 .	.Q V	· ·	•
16.750	0.5539	3.13 .	.Q V		

16.767	0.5581	3.09 .	. Q V .			
16.783	0.5623	3.06 .	. Q V .			
16.800	0.5665	3.02 .	.QV.	•	•	

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated Peak Flow Rate	Duration (minutes)
	=======
0%	1009.0
10%	1009.0
20%	1009.0
30%	805.0
40%	530.0
50%	365.0
60%	275.0
70%	210.0
80%	145.0
90%	85.0

	TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 0.61
<pre>************************************</pre>	

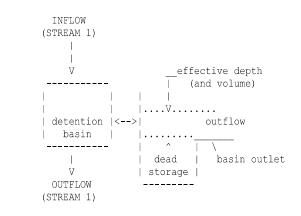
FILE NAME: OAKC100.DAT TIME/DATE OF STUDY: 21:09 12/03/2017	
The Small Area Unit Hydrograph Procedures in Section J of the Hydrology Manual provides estimates of runoff hydrograph and runoff volume for watersheds whose time of concentration is less than 25 minutes. The PROGRAM User should check the applicability of using the small area unit hydrograph procedures, and follow the guidelines in Sections J and K.5 in complex watershed modeling. FLOW PROCESS FROM NODE 20.00 TO NODE 23.00 IS CODE = 1.2	
>>>>SUBAREA RUNOFF (SMALL AREA UNIT-HYDROGRAPH ANALYSIS) <<<<<	
<pre>(SMALL AREA UNIT-HYDROGRAPH ADDED TO STREAM #1) RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90 TOTAL CATCHMENT AREA(ACRES) = 5.25 SOIL-LOSS RATE, Fm,(INCH/HR) = 0.120 LOW LOSS FRACTION = 0.184 TIME OF CONCENTRATION(MIN.) = 9.00 SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED: RETURN FREQUENCY(YEARS) = 100 5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.52 30-MINUTE POINT RAINFALL VALUE(INCHES) = 1.09 1-HOUR POINT RAINFALL VALUE(INCHES) = 1.45 3-HOUR POINT RAINFALL VALUE(INCHES) = 2.43 6-HOUR POINT RAINFALL VALUE(INCHES) = 3.36 24-HOUR POINT RAINFALL VALUE(INCHES) = 5.63</pre>	
TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 1.85	
1	2

U.

VOLUME (ACRE-FEET) = 0.61

HYDROGRAPH IN ONE-MINUTE UNIT INTERVALS(CFS) (Notes: Time indicated is at END of Each Unit Intervals. Peak 5-minute rainfall intensity is modeled as a constant value for entire 5-minute period.)

TIME (HRS)	VOLUME (AF)	Q(CFS) 0	•	5.1	10.2	15.2	20.3
15.800	0.9686	3.92	•	Ω.	V		
15.817	0.9743	4.08	•	Q.	.V	•	•
15.833	0.9801	4.25	•	Q.	.V	•	•
15.850	0.9862	4.42	•	Q.	.V		
15.867	0.9925	4.61	•	Q.	.V	•	
15.883	0.9992	4.81		Q.	.V	•	•
15.900	1.0061	5.02		Q.	.V	•	
15.917	1.0133	5.22		Q	.v		
15.933	1.0208	5.43		0	. V	•	
15.950	1.0285	5.63		.Q	. V		
15.967	1.0366	5.84		. Q	. V		
15.983	1.0449	6.05		.Q	. V		
16.000	1.0535	6.25	•	.γ . Q	. v	•	•
16.017	1.0633	7.13	•	. v	. v	•	•
16.033	1.0753	8.68	•		Q. V	•	•
	1.0894	10.23	•	•	~	•	•
16.050			·	•	~	•	•
16.067	1.1056	11.78	•	•	• Q	•	•
16.083	1.1240	13.33	·	•		Q .	•
16.100	1.1445	14.89	·	•	. V	~	•
16.117	1.1671	16.44	•	•		V . Q	•
16.133	1.1919	17.99	·	•	•	V . Q	
16.150	1.2199	20.31	•	•	•	v.	Q
16.167	1.2466	19.38	•	•		V .	Q.
16.183	1.2707	17.52	•	•	•	V . Q	•
16.200	1.2923	15.66				VQ	
16.217	1.3113	13.80				QV .	•
16.233	1.3278	11.94		•	. Q	v.	
16.250	1.3416	10.08			Q.	ν.	
16.267	1.3530	8.22			Q.	V.	
16.283	1.3617	6.36		. Q		v.	
16.300	1.3679	4.50		Q.		v.	
16.317	1.3728	3.51		ç.		v.	
16.333	1.3774	3.38		ç.		v.	
16.350	1.3819	3.26		Ω.		v.	
16.367	1.3862	3.13	:	ç.	•	v.	•
16.383	1.3904	3.01	:	Q .	•	v	•
16.400	1.3943	2.88	:	Q .	•	v	•
16.400	1.3943	2.00	•	Q .	•	V V	٠
			·		•	V V	•
16.433	1.4018	2.63	·	Q .	٠		•
16.450	1.4052	2.51	·	Q .	•	V	•
16.467	1.4086	2.43	·	Q.	•	V	•
16.483	1.4119	2.40	•	Q.	•	V	•
16.500	1.4152	2.37	·	Q.	•	V	•
16.517	1.4184	2.34	·	Q.	•	V	•
16.533	1.4216	2.31		Q.		V	


16.550	1.4247	2.28	Q	•	V		
16.567	1.4278	2.25	Q		V	•	
16.583	1.4309	2.22	Q	•	V	•	
16.600	1.4339	2.19	Q		V		
16.617	1.4369	2.16	Q		.V		
16.633	1.4398	2.13	Q		.V		
16.650	1.4427	2.10	Q		.V	•	
16.667	1.4455	2.06	Q		.V		
16.683	1.4483	2.03	Q		.V	•	
16.700	1.4511	2.00	Q	•	.V		
16.717	1.4538	1.97	Q	•	.V		
16.733	1.4565	1.93	Q		.V		
16.750	1.4591	1.90	Q	•	.V	•	
16.767	1.4617	1.87	Q	•	.V	•	
16.783	1.4642	1.85	Q		.V		
16.800	1.4667	1.83	Q	•	.V		

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated Peak Flow Rate	Duration (minutes)
0%	1009.0
U To	1009.0
10%	485.0
20%	150.0
30%	90.0
40%	75.0
50%	60.0
60%	45.0
70%	35.0
80%	25.0
90%	10.0

>>>>FLOW-THROUGH DETENTION BASIN ROUTING MODEL APPLIED TO STREAM #1<<<<<

							4.6.000	0 000	15 66	0 00	C 45	F 0	0.6
							16.200	0.000	15.66	0.00	6.45	5.8	
							16.217	0.000	13.80	0.00	6.56	6.1	0.6
	JNOFF HYDROGRAF			IBER 1			16.233	0.000	11.94	0.00	6.65	6.4	0.6
	A FLOW-THROUGH						16.250	0.000	10.08	0.00	6.70	6.6	0.6
	D BASIN CONDIT)WS:			16.267	0.000	8.22	0.00	6.72	6.7	0.6
	STORAGE (AF) =	0.000		0 000			16.283	0.000	6.36	0.00	6.72	6.7	0.0
	TIED DEAD STORA			0.000		0.000	16.300	0.000	4.50	0.00	6.68	6.7	0.6
	TIED EFFECTIVE					0.000	16.317	0.000	3.51	0.00	6.64	6.6	0.0
DETENI	ION BASIN CONS	STANT LOSS	RATE (CF	$^{2}S) = 0.1$	00		16.333	0.000	3.38	0.00	6.59	6.4	0.0
							16.350	0.000	3.26	0.00	6.54	6.3	0.
							16.367	0.000	3.13	0.00	6.50	6.2	0.
BASIN DE	IPTH VERSUS OUT	FLOW AND	STORAGE	INFORMATIO	N:		16.383	0.000	3.01	0.00	6.45	6.1	0.
							16.400	0.000	2.88	0.00	6.40	5.9	0.
INTERVA		OUTFLOW		RAGE			16.417	0.000	2.76	0.00	6.36	5.8	0.
NUMBEF		(CFS)		(AF)			16.433	0.000	2.63	0.00	6.31	5.7	0.
1		0.00		.000			16.450	0.000	2.51	0.00	6.27	5.5	0.
2	1.00	0.14		.090			16.467	0.000	2.43	0.00	6.22	5.4	Ο.
3	2.10	0.35		.200			16.483	0.000	2.40	0.00	6.18	5.3	0.
4	4.00	1.96	0	.380			16.500	0.000	2.37	0.00	6.13	5.2	0.
5	6.00	4.74	0	.560			16.517	0.000	2.34	0.00	6.09	5.1	Ο.
6	8.10	10.56	0	.750			16.533	0.000	2.31	0.00	6.05	4.9	0.
7	10.00	17.22	0	.930			16.550	0.000	2.28	0.00	6.01	4.8	0.
8	12.10	25.78	1	.130			16.567	0.000	2.25	0.00	5.98	4.7	0.
9	14.00	38.50	1	.310			16.583	0.000	2.22	0.00	5.94	4.7	Ο.
							16.600	0.000	2.19	0.00	5.90	4.6	Ο.
							16.617	0.000	2.16	0.00	5.86	4.6	0.
							16.633	0.000	2.13	0.00	5.83	4.5	0.
IED-PULS BA	ASIN ROUTING MC		TS(1-MIN	UTE COMPUTA	ATION INT	ERVALS):	16.650	0.000	2.10	0.00	5.79	4.5	0.5
		DEL RESUL						0.000 0.000	2.10 2.06	0.00 0.00	5.79 5.75	4.5 4.4	
: Computed	ASIN ROUTING MC	DEL RESUL	UME are	estimated a	at the cl	ock time;	16.650						0.5
: Computed	ASIN ROUTING MC EFFECTIVE DEPI	DEL RESUL	UME are	estimated a	at the cl	ock time;	16.650 16.667	0.000	2.06	0.00	5.75	4.4	0.9 0.9 0.9
: Computed	ASIN ROUTING MC EFFECTIVE DEPI	DEL RESUL	UME are	estimated a	at the cl	ock time;	16.650 16.667 16.683	0.000 0.000	2.06 2.03	0.00 0.00	5.75 5.72	4.4 4.4	0.5
: Computed MEAN OUTE CLOCK	ASIN ROUTING MC EFFECTIVE DEPI	DDEL RESUL TH and VOL erage value	UME are	estimated a g the unit :	at the cl interval. MEAN	ock time;	16.650 16.667 16.683 16.700	0.000 0.000 0.000	2.06 2.03 2.00	0.00 0.00 0.00	5.75 5.72 5.68	4.4 4.4 4.3	0.! 0.! 0.!
: Computed MEAN OUTE CLOCK	ASIN ROUTING MC EFFECTIVE DEPT FLOW is the ave	DDEL RESUL TH and VOL erage value	UME are e during LOSS	estimated a g the unit :	at the cl interval. MEAN OUTFLOW	lock time;)	16.650 16.667 16.683 16.700 16.717	0.000 0.000 0.000 0.000	2.06 2.03 2.00 1.97	0.00 0.00 0.00 0.00	5.75 5.72 5.68 5.65	4.4 4.4 4.3 4.3	0.
: Computed MEAN OUTE CLOCK TIME (HRS)	ASIN ROUTING MC EFFECTIVE DEPT FLOW is the ave DEAD-STORAGE	DDEL RESUL TH and VOL erage valu INFLOW (CFS)	UME are e during LOSS (CFS)	estimated a the unit : EFFECTIVE DEPTH(FT)	at the cl interval. MEAN OUTFLOW (CFS)	ock time;) EFFECTIVE VOLUME (AF)	16.650 16.667 16.683 16.700 16.717 16.733	0.000 0.000 0.000 0.000 0.000	2.06 2.03 2.00 1.97 1.93	0.00 0.00 0.00 0.00 0.00	5.75 5.72 5.68 5.65 5.61	4.4 4.4 4.3 4.3 4.2	0. 0. 0. 0.
: Computed MEAN OUTE CLOCK TIME (HRS)	ASIN ROUTING MC EFFECTIVE DEPT CLOW is the ave DEAD-STORAGE FILLED(AF)	DDEL RESUL TH and VOL erage valu INFLOW (CFS)	UME are e during LOSS (CFS)	estimated a the unit : EFFECTIVE DEPTH(FT)	at the cl interval. MEAN OUTFLOW (CFS)	ock time;) EFFECTIVE VOLUME (AF)	16.650 16.667 16.683 16.700 16.717 16.733 16.750	0.000 0.000 0.000 0.000 0.000 0.000	2.06 2.03 2.00 1.97 1.93 1.90	0.00 0.00 0.00 0.00 0.00 0.00	5.75 5.72 5.68 5.65 5.61 5.58	4.4 4.4 4.3 4.3 4.2 4.2	0. 0. 0. 0. 0. 0.
: Computed MEAN OUTE CLOCK TIME (HRS)	ASIN ROUTING MC EFFECTIVE DEPT CLOW is the ave DEAD-STORAGE FILLED(AF)	DDEL RESUL TH and VOL erage valu INFLOW (CFS)	UME are e during LOSS (CFS)	estimated a the unit : EFFECTIVE DEPTH(FT)	at the cl interval. MEAN OUTFLOW (CFS)	ock time;) EFFECTIVE VOLUME(AF)	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767	0.000 0.000 0.000 0.000 0.000 0.000 0.000	2.06 2.03 2.00 1.97 1.93 1.90 1.87	0.00 0.00 0.00 0.00 0.00 0.00 0.00	5.75 5.72 5.68 5.65 5.61 5.58 5.54	4.4 4.3 4.3 4.2 4.2 4.1	0. 0. 0. 0. 0. 0. 0.
: Computed MEAN OUTH CLOCK TIME (HRS) 15.817	ASIN ROUTING MC EFFECTIVE DEPT CLOW is the ave DEAD-STORAGE FILLED(AF) 0.000	DEL RESUL TH and VOL erage valu INFLOW (CFS) 4.08	UME are e during LOSS (CFS) 0.00	estimated a the unit : EFFECTIVE DEPTH(FT) 4.02	at the cl interval. MEAN OUTFLOW (CFS) 2.0	ock time;) EFFECTIVE VOLUME (AF) 0.381	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.54 5.51	4.4 4.3 4.3 4.2 4.2 4.2 4.1 4.1	0. 0. 0. 0. 0. 0. 0.
: Computed MEAN OUTE CLOCK TIME (HRS) 15.817 15.833	ASIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000	DDEL RESUL' TH and VOL' rage valu INFLOW (CFS) 4.08 4.25	UME are e during LOSS (CFS) 0.00 0.00	estimated a the unit : EFFECTIVE DEPTH(FT) 4.02 4.05	at the cl interval. MEAN OUTFLOW (CFS) 2.0 2.0	Ock time;) EFFECTIVE VOLUME (AF) 0.381 0.384 0.388	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.54 5.51	4.4 4.3 4.3 4.2 4.2 4.2 4.1 4.1	0. 0. 0. 0. 0. 0. 0.
: Computed MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850	ASIN ROUTING MC EFFECTIVE DEPT CLOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000	DDEL RESUL' TH and VOL' rage value INFLOW (CFS) 4.08 4.25 4.42	UME are e during LOSS (CFS) 0.00 0.00 0.00	estimated a the unit : EFFECTIVE DEPTH(FT) 4.02 4.05 4.09	At the cl interval. MEAN OUTFLOW (CFS) 2.0 2.0 2.1	Ock time;) EFFECTIVE VOLUME (AF) 0.381 0.384 0.388 0.391	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5TORAGE:	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85 1.83	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.54 5.51	4.4 4.3 4.3 4.2 4.2 4.2 4.1 4.1	0. 0. 0. 0. 0. 0. 0.
: Computed MEAN OUTE CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883	ASIN ROUTING MC EFFECTIVE DEPT LOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000 0.000 0.000	DEL RESUL' TH and VOL' Trage value INFLOW (CFS) 4.08 4.25 4.42 4.61	UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00	estimated a the unit : EFFECTIVE DEPTH(FT) 4.02 4.05 4.09 4.12	MEAN OUTFLOW (CFS) 2.0 2.0 2.1 2.1	Ock time;) EFFECTIVE VOLUME (AF) 0.381 0.384 0.388 0.391	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STORAGE: 1.853	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85 1.83	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.54 5.51 5.48	4.4 4.3 4.3 4.2 4.2 4.1 4.1 4.0	0. 0. 0. 0. 0. 0. 0.
: Computed MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900	ASIN ROUTING MC EFFECTIVE DEPI FLOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DEL RESUL TH and VOL erage value INFLOW (CFS) 4.08 4.25 4.42 4.61 4.81 5.02	UME are e during (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	estimated a g the unit : DEPTH(FT) 4.02 4.05 4.09 4.12 4.16 4.21	at the cl interval. OUTFLOW (CFS) 2.0 2.0 2.1 2.1 2.1 2.2 2.2	Cock time;) EFFECTIVE VOLUME(AF) 0.381 0.384 0.384 0.388 0.391 0.395 0.399	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5TORAGE: 1.853 0.000	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85 1.83 3 AF 0 AF (WITH	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.54 5.51	4.4 4.3 4.3 4.2 4.2 4.1 4.1 4.0	0. 0. 0. 0. 0. 0. 0.
: Computed MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917	ASIN ROUTING MC EFFECTIVE DEPI FLOW is the ave DEAD-STORAGE FILLED (AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DEL RESUL TH and VOL erage value INFLOW (CFS) 4.08 4.25 4.42 4.61 4.81 5.02 5.22	UME are e during (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	estimated a g the unit : DEPTH(FT) 4.02 4.02 4.05 4.09 4.12 4.16 4.21 4.25	at the cl interval. OUTFLOW (CFS) 2.0 2.0 2.1 2.1 2.1 2.2 2.2 2.3	Cock time;) EFFECTIVE VOLUME(AF) 0.381 0.384 0.384 0.388 0.391 0.395 0.399 0.403	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5TORAGE: 1.853 0.000 1.853	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85 1.83 3 AF 3 AF (WITH 3 AF	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.54 5.51 5.48	4.4 4.3 4.3 4.2 4.2 4.1 4.1 4.0	0. 0. 0. 0. 0. 0. 0.
: Computed MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933	ASIN ROUTING MC EFFECTIVE DEPI FLOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DDEL RESUL' CH and VOL' erage value INFLOW (CFS) 4.08 4.25 4.42 4.61 4.61 4.81 5.02 5.22 5.43	UME are e during (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	estimated a g the unit : DEPTH(FT) 4.02 4.05 4.09 4.12 4.16 4.21 4.25 4.30	at the cl interval. OUTFLOW (CFS) 2.0 2.0 2.1 2.1 2.1 2.2 2.2 2.3 2.3	Cock time;) EFFECTIVE VOLUME(AF) 0.381 0.384 0.388 0.391 0.395 0.399 0.403 0.403 0.407	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5TORAGE: 1.853 0.000	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85 1.83 3 AF 3 AF (WITH 3 AF	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.54 5.51 5.48	4.4 4.3 4.3 4.2 4.2 4.1 4.1 4.0	0. 0. 0. 0. 0. 0. 0.
: Computed MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950	ASIN ROUTING MC EFFECTIVE DEPI FLOW is the ave DEAD-STORAGE FILLED(AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DEL RESUL TH and VOL erage value INFLOW (CFS) 4.08 4.25 4.42 4.61 4.81 5.02 5.22 5.43 5.63	UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	estimated a g the unit : EFFECTIVE DEPTH(FT) 4.02 4.05 4.09 4.12 4.16 4.21 4.25 4.30 4.35	at the cl interval. MEAN OUTFLOW (CFS) 2.0 2.0 2.1 2.1 2.1 2.2 2.2 2.3 2.3 2.3 2.4	Cock time;) EFFECTIVE VOLUME (AF) 0.381 0.384 0.388 0.391 0.395 0.399 0.403 0.403 0.407 0.411	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5TORAGE: 1.853 0.000 1.853	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85 1.83 3 AF 3 AF (WITH 3 AF	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.54 5.51 5.48	4.4 4.3 4.3 4.2 4.2 4.1 4.1 4.0	0. 0. 0. 0. 0. 0. 0.
: Computed MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967	ASIN ROUTING MC EFFECTIVE DEPI FLOW is the ave DEAD-STORAGE FILLED (AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DEL RESUL TH and VOL erage value INFLOW (CFS) 4.08 4.25 4.42 4.61 4.81 5.02 5.22 5.43 5.63 5.84	UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	estimated a g the unit s EFFECTIVE DEPTH(FT) 4.02 4.05 4.09 4.12 4.16 4.21 4.25 4.30 4.35 4.40	at the cl interval. OUTFLOW (CFS) 2.0 2.0 2.1 2.1 2.2 2.2 2.3 2.3 2.3 2.4 2.5	Cock time;) EFFECTIVE VOLUME (AF) 0.381 0.384 0.388 0.391 0.395 0.399 0.403 0.403 0.407 0.411 0.416	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.853 0.000 1.853 0.000	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85 1.83 3 AF 0 AF (WITH 3 AF	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.51 5.48	4.4 4.3 4.3 4.2 4.2 4.1 4.1 4.0	0. 0. 0. 0. 0. 0. 0. 0.
: Computed MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.983	ASIN ROUTING MC EFFECTIVE DEPI CLOW is the ave DEAD-STORAGE FILLED (AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DEL RESUL TH and VOL rage value INFLOW (CFS) 4.08 4.25 4.42 4.61 4.81 5.02 5.22 5.43 5.63 5.84 6.05	UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	estimated a g the unit a EFFECTIVE DEPTH(FT) 4.02 4.05 4.09 4.12 4.16 4.21 4.25 4.30 4.35 4.40 4.45	at the cl interval. OUTFLOW (CFS) 2.0 2.0 2.1 2.1 2.2 2.2 2.3 2.3 2.3 2.4 2.5 2.6	Cock time;) EFFECTIVE VOLUME (AF) 0.381 0.384 0.388 0.391 0.395 0.399 0.403 0.403 0.407 0.411 0.416 0.421	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85 1.83 3 AF 0 AF (WITH 3 AF	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.51 5.48	4.4 4.3 4.3 4.2 4.2 4.1 4.1 4.0	0. 0. 0. 0. 0. 0. 0. 0.
: Computed MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.983 16.000	ASIN ROUTING MC EFFECTIVE DEPI CLOW is the ave DEAD-STORAGE FILLED (AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DEL RESUL TH and VOL rage value INFLOW (CFS) 4.08 4.25 4.42 4.61 4.81 5.02 5.43 5.63 5.84 6.05 6.25	UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	estimated a g the unit a EFFECTIVE DEPTH(FT) 4.02 4.05 4.09 4.12 4.16 4.21 4.25 4.30 4.35 4.40 4.45 4.51	At the cl interval. OUTFLOW (CFS) 2.0 2.0 2.1 2.1 2.2 2.2 2.3 2.3 2.4 2.5 2.6 2.6	Cock time;) EFFECTIVE VOLUME (AF) 0.381 0.384 0.388 0.391 0.395 0.399 0.403 0.403 0.407 0.411 0.416 0.421 0.426	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME =	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85 1.83 3 AF 0 AF (WITH 3 AF	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.51 5.48	4.4 4.3 4.3 4.2 4.2 4.1 4.1 4.0	0. 0. 0. 0. 0. 0. 0. 0. 0.
: Computed MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.983 15.900 15.917 15.933 15.950 15.950 15.967 15.983 16.000 16.017	ASIN ROUTING MC EFFECTIVE DEPI CLOW is the ave DEAD-STORAGE FILLED (AF) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DEL RESUL TH and VOL rage value INFLOW (CFS) 4.08 4.25 4.42 4.61 4.81 5.02 5.22 5.43 5.63 5.84 6.05 6.25 7.13	UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	estimated a g the unit a EFFECTIVE DEPTH(FT) 4.02 4.05 4.09 4.12 4.16 4.21 4.25 4.30 4.35 4.40 4.35 4.40 4.45 4.51 4.58	at the cl interval. OUTFLOW (CFS) 2.0 2.0 2.1 2.1 2.2 2.2 2.3 2.3 2.4 2.5 2.6 2.6 2.7	Cock time;) EFFECTIVE VOLUME (AF) 0.381 0.384 0.384 0.395 0.395 0.399 0.403 0.407 0.411 0.416 0.421 0.426 0.432	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = LOSS VOLUME =	0.000 0.0000 0.00000 0.00000 0.0000 0.0000 0.000	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85 1.83 3 AF 0 AF (WITH 3 AF 3 AF 3 AF	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.51 5.48	4.4 4.3 4.3 4.2 4.2 4.1 4.1 4.0	0. 0. 0. 0. 0. 0. 0. 0. 0.
: Computed MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.983 15.900 15.917 15.933 15.950 15.967 15.983 16.000 16.017 16.033	ASIN ROUTING MC EFFECTIVE DEPT CLOW is the ave DEAD-STORAGE FILLED (AF) 0.000	DEL RESUL TH and VOL rage value INFLOW (CFS) 4.08 4.25 4.42 4.61 4.81 5.02 5.22 5.43 5.63 5.84 6.05 6.25 7.13 8.68	UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	estimated a the unit f EFFECTIVE DEPTH(FT) 4.02 4.05 4.09 4.12 4.16 4.21 4.25 4.30 4.35 4.40 4.35 4.40 4.45 4.51 4.58 4.67	at the cl interval. OUTFLOW (CFS) 2.0 2.0 2.1 2.1 2.2 2.2 2.3 2.3 2.3 2.4 2.5 2.6 2.6 2.7 2.8	Cock time;) EFFECTIVE VOLUME (AF) 0.381 0.384 0.384 0.388 0.391 0.395 0.399 0.403 0.403 0.407 0.411 0.416 0.421 0.426 0.432 0.440	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = LOSS VOLUME =	0.000 0.0000 0.00000 0.00000 0.0000 0.0000 0.000	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85 1.83 3 AF 0 AF (WITH 3 AF 0 AF (WITH 3 AF 0 AF	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.51 5.48 00 AF INITI	4.4 4.4 4.3 4.3 4.2 4.2 4.1 4.1 4.1 4.0 IALLY FIL	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
: Computed MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.863 15.900 15.917 15.933 15.950 15.967 15.983 16.000 16.017 16.033 16.050	ASIN ROUTING MC EFFECTIVE DEPT CLOW is the ave DEAD-STORAGE FILLED (AF) 0.000	DEL RESUL TH and VOL rage value INFLOW (CFS) 4.08 4.25 4.42 4.61 4.81 5.02 5.22 5.43 5.63 5.63 5.63 5.84 6.05 6.25 7.13 8.68 10.23	UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	estimated a the unit f EFFECTIVE DEPTH(FT) 4.02 4.05 4.09 4.12 4.16 4.21 4.25 4.30 4.35 4.40 4.35 4.40 4.45 4.51 4.58 4.67 4.78	At the cl interval. MEAN OUTFLOW (CFS) 2.0 2.0 2.1 2.1 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.4 2.5 2.6 2.6 2.7 2.8 3.0	Cock time;) EFFECTIVE VOLUME(AF) 0.381 0.384 0.388 0.391 0.395 0.395 0.399 0.403 0.407 0.411 0.416 0.421 0.426 0.422 0.440 0.450	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = LOSS VOLUME =	0.000 0.0000 0.00000 0.00000 0.0000 0.0000 0.000	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85 1.83 3 AF 0 AF (WITH 3 AF 0 AF (WITH 3 AF 0 AF	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.51 5.48 00 AF INITI	4.4 4.4 4.3 4.3 4.2 4.2 4.1 4.1 4.1 4.0 IALLY FIL	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
: Computed MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.983 16.000 16.017 16.033 16.050 16.067	ASIN ROUTING MC EFFECTIVE DEPT CLOW is the ave DEAD-STORAGE FILLED (AF) 0.000	DEL RESUL TH and VOL rage value INFLOW (CFS) 4.08 4.25 4.42 4.61 4.81 5.02 5.43 5.63 5.84 6.05 6.25 7.13 8.68 10.23 11.78	UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	estimated a the unit a EFFECTIVE DEPTH(FT) 4.02 4.05 4.09 4.12 4.16 4.21 4.25 4.30 4.35 4.40 4.45 4.51 4.58 4.67 4.78 4.91	At the cl interval. MEAN OUTFLOW (CFS) 2.0 2.0 2.1 2.2 2.2 2.3 2.3 2.3 2.4 2.5 2.6 2.6 2.6 2.7 2.8 3.0 3.1	Cock time;) EFFECTIVE VOLUME(AF) 0.381 0.384 0.388 0.391 0.395 0.399 0.403 0.407 0.411 0.416 0.421 0.426 0.422 0.440 0.450 0.462	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = ************************************	0.000 0.0000 0.00000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.000	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85 1.83 3 AF 0 AF (WITH 3 AF 0 AF 3.00 TO NOI 00 TO NOI 00 TO NOI	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.51 5.48 00 AF INITI	4.4 4.4 4.3 4.3 4.2 4.2 4.1 4.1 4.0 HALLY FIL	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
: Computed MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.963 16.000 16.017 16.033 16.050 16.067 16.083	ASIN ROUTING MC EFFECTIVE DEPT FLOW is the ave DEAD-STORAGE FILLED (AF) 0.000	DEL RESUL TH and VOL erage value INFLOW (CFS) 4.08 4.25 4.25 4.42 4.61 4.81 5.02 5.22 5.43 5.63 5.84 6.05 6.25 7.13 8.68 10.23 11.78 13.33	UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	estimated a g the unit a EFFECTIVE DEPTH(FT) 4.02 4.05 4.09 4.12 4.16 4.21 4.25 4.30 4.35 4.40 4.35 4.40 4.55 4.51 4.58 4.67 4.78 4.91 5.06	at the cl interval. OUTFLOW (CFS) 2.0 2.0 2.1 2.1 2.1 2.2 2.2 2.3 2.3 2.3 2.4 2.5 2.6 2.6 2.7 2.8 3.0 3.1 3.3	Cock time;) EFFECTIVE VOLUME(AF) 0.381 0.384 0.384 0.388 0.391 0.395 0.399 0.403 0.403 0.407 0.411 0.416 0.421 0.426 0.432 0.440 0.450 0.462 0.476	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = ************************************	0.000 0.0000 0.00000 0.00000 0.0000 0.0000 0.000	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85 1.83 3 AF 0 AF (WITH 3 AF 0 AF 3.00 TO NOI DROGRAPH<	0.00 0.00	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.51 5.48 00 AF INITI	4.4 4.4 4.3 4.3 4.2 4.2 4.1 4.1 4.0 MALLY FIL: ************************************	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
: Computed MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.967 15.983 16.000 16.017 16.033 16.050 16.067 16.083 16.100	ASIN ROUTING MC EFFECTIVE DEPI FLOW is the ave DEAD-STORAGE FILLED (AF) 0.000	DEL RESUL TH and VOL erage value INFLOW (CFS) 4.08 4.25 4.25 4.42 4.61 4.81 5.02 5.22 5.43 5.63 5.84 6.05 6.25 7.13 8.68 10.23 11.78 13.33 14.89	UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	estimated a EFFECTIVE DEPTH(FT) 4.02 4.02 4.03 4.09 4.12 4.16 4.21 4.25 4.30 4.35 4.40 4.35 4.40 4.51 4.58 4.67 4.78 4.91 5.06 5.24	at the cl interval. OUTFLOW (CFS) 2.0 2.0 2.1 2.1 2.2 2.2 2.3 2.3 2.4 2.5 2.6 2.6 2.7 2.8 3.0 3.1 3.3 3.6	<pre>cock time;) EFFECTIVE VOLUME(AF) 0.381 0.384 0.384 0.388 0.391 0.395 0.399 0.403 0.407 0.411 0.416 0.421 0.426 0.432 0.440 0.450 0.450 0.462 0.476 0.491</pre>	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = ************************************	0.000 0.0000 0.0	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85 1.83 3 AF 0 AF (WITH 3 AF 0 AF 0 AF 0 AF 0 AF 0 OROGRAPH<	0.00 0.00	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.51 5.48 00 AF INITI 00 IS CODE	4.4 4.4 4.3 4.3 4.2 4.2 4.1 4.1 4.0 IALLY FIL	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
: Computed MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.967 15.963 16.001 16.017 16.033 16.050 16.067 16.083 16.100 16.117	ASIN ROUTING MC EFFECTIVE DEPI FLOW is the ave DEAD-STORAGE FILLED (AF) 0.000	DEL RESUL TH and VOL erage value INFLOW (CFS) 4.08 4.25 4.42 4.61 4.81 5.02 5.22 5.43 5.63 5.84 6.05 6.25 7.13 8.68 10.23 11.78 13.33 14.89 16.44	UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	estimated a g the unit a EFFECTIVE DEPTH(FT) 4.02 4.02 4.03 4.09 4.12 4.16 4.21 4.25 4.30 4.35 4.40 4.35 4.40 4.45 4.51 4.58 4.67 4.78 4.91 5.06 5.24 5.43	at the cl interval. OUTFLOW (CFS) 2.0 2.0 2.1 2.1 2.2 2.3 2.3 2.4 2.5 2.6 2.6 2.6 2.7 2.8 3.0 3.1 3.3 3.6 3.8	Cock time;) EFFECTIVE VOLUME (AF) 0.381 0.384 0.388 0.391 0.395 0.399 0.403 0.407 0.411 0.416 0.421 0.426 0.421 0.426 0.432 0.440 0.450 0.462 0.476 0.491 0.509	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = ************************************	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85 1.83 3 AF 0 AF (WITH 3 AF 0 AF 0 AF 0 AF 0 OTO NOI 000GRAPH<< 0 TO NOI 000GRAPH	0.00 0.00	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.51 5.48 00 AF INITI 00 IS CODE 00 IS CODE	4.4 4.4 4.3 4.3 4.2 4.2 4.1 4.1 4.0 (ALLY FIL)	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
: Computed MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.963 16.000 16.017 16.033 16.050 16.067 16.083 16.100 16.117 16.133	ASIN ROUTING MC EFFECTIVE DEPI FLOW is the ave DEAD-STORAGE FILLED (AF) 0.000	DEL RESUL TH and VOL erage value INFLOW (CFS) 4.08 4.25 4.42 4.61 4.81 5.02 5.22 5.43 5.63 5.84 6.05 6.25 7.13 8.68 10.23 11.78 13.33 14.89 16.44 17.99	UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	estimated a g the unit a EFFECTIVE DEPTH(FT) 4.02 4.02 4.05 4.09 4.12 4.16 4.21 4.25 4.30 4.35 4.40 4.45 4.51 4.58 4.67 4.78 4.91 5.06 5.24 5.43 5.64	at the cl interval. OUTFLOW (CFS) 2.0 2.0 2.1 2.1 2.2 2.2 2.3 2.3 2.4 2.5 2.6 2.6 2.7 2.8 3.0 3.1 3.3 3.6 3.8 4.1	<pre>cock time;) EFFECTIVE VOLUME(AF) 0.381 0.384 0.388 0.391 0.395 0.399 0.403 0.407 0.411 0.416 0.421 0.426 0.421 0.426 0.432 0.440 0.450 0.462 0.476 0.491 0.509 0.528</pre>	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = ************************************	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85 1.83 3 AF 0 AF (WITH 3 AF 0 AF (WITH 3 AF 0 AF 0 AF 0 AF 0 AF 0 NO 0 TO NOI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.51 5.48 00 AF INITI 00 AF INITI 100 IS CODE	4.4 4.4 4.3 4.3 4.2 4.2 4.1 4.1 4.0 IALLY FIL: ********** E = 11 (CFS) vals. as .)	0. 0. 0. 0. 0. 0. 0. 0. 0. 1. ED)
: Computed MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.983 16.000 16.017 16.033 16.050 16.067 16.083 16.100 16.117 16.133 16.150	ASIN ROUTING MC EFFECTIVE DEPI FLOW is the ave DEAD-STORAGE FILLED (AF) 0.000	DEL RESUL TH and VOL erage value INFLOW (CFS) 4.08 4.25 4.42 4.61 4.81 5.02 5.22 5.43 5.63 5.84 6.05 6.25 7.13 8.68 10.23 11.78 13.33 14.89 16.44 17.99 20.31	UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	estimated a g the unit a EFFECTIVE DEPTH(FT) 4.02 4.02 4.05 4.09 4.12 4.16 4.21 4.25 4.30 4.35 4.40 4.45 4.51 4.58 4.67 4.78 4.91 5.06 5.24 5.43 5.64 5.89	at the cl interval. OUTFLOW (CFS) 2.0 2.0 2.1 2.1 2.2 2.2 2.3 2.3 2.4 2.5 2.6 2.6 2.6 2.7 2.8 3.0 3.1 3.3 3.6 3.8 4.1 4.4	Cock time;) EFFECTIVE VOLUME (AF) 0.381 0.384 0.388 0.391 0.395 0.399 0.403 0.407 0.411 0.416 0.421 0.426 0.432 0.440 0.426 0.432 0.440 0.450 0.462 0.476 0.491 0.509 0.528 0.550	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = ************************************	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85 1.83 3 AF 0 AF (WITH 3 AF 0 AF (WITH 3 AF 0 AF 0 AF 0 AF 0 AF 0 AF 0 NO 0 TO NOI 0 NO 0 NO 0 NO 0 NO 0 NO 0 NO 0 NO 0 NO	0.00 0.00	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.51 5.48 00 AF INITI 00 AF INITI	4.4 4.4 4.3 4.3 4.2 4.2 4.1 4.1 4.0 (IALLY FIL) (CFS) vals. as .)	0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
: Computed MEAN OUTH CLOCK TIME (HRS) 15.817 15.833 15.850 15.867 15.883 15.900 15.917 15.933 15.950 15.967 15.963 16.000 16.017 16.033 16.050 16.067 16.083 16.100 16.117 16.133	ASIN ROUTING MC EFFECTIVE DEPI FLOW is the ave DEAD-STORAGE FILLED (AF) 0.000	DEL RESUL TH and VOL erage value INFLOW (CFS) 4.08 4.25 4.42 4.61 4.81 5.02 5.22 5.43 5.63 5.84 6.05 6.25 7.13 8.68 10.23 11.78 13.33 14.89 16.44 17.99	UME are e during LOSS (CFS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	estimated a g the unit a EFFECTIVE DEPTH(FT) 4.02 4.02 4.05 4.09 4.12 4.16 4.21 4.25 4.30 4.35 4.40 4.45 4.51 4.58 4.67 4.78 4.91 5.06 5.24 5.43 5.64	at the cl interval. OUTFLOW (CFS) 2.0 2.0 2.1 2.1 2.2 2.2 2.3 2.3 2.4 2.5 2.6 2.6 2.7 2.8 3.0 3.1 3.3 3.6 3.8 4.1	<pre>cock time;) EFFECTIVE VOLUME(AF) 0.381 0.384 0.388 0.391 0.395 0.399 0.403 0.407 0.411 0.416 0.421 0.426 0.421 0.426 0.432 0.440 0.450 0.462 0.476 0.491 0.509 0.528</pre>	16.650 16.667 16.683 16.700 16.717 16.733 16.750 16.767 16.783 16.800 PROCESS SUMMARY OF S INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME = ************************************	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	2.06 2.03 2.00 1.97 1.93 1.90 1.87 1.85 1.83 3 AF 0 AF (WITH 3 AF 0 AF (WITH 3 AF 0 AF (WITH 3 AF 0 AF 0 AF 0 NO 0 NO 0.	0.00 0.00	5.75 5.72 5.68 5.65 5.61 5.58 5.54 5.51 5.48 00 AF INITI 00 IS CODE INTERVALS Juit Interv. s modeled te period.	4.4 4.4 4.3 4.3 4.2 4.2 4.1 4.1 4.0 (IALLY FIL: (CFS) 7.5	0. 0. 0. 0. 0. 0. 0. 0. 0. 1. ED)

15.800	0.5902	1.93 .	Q.V.		
15.817	0.5929	1.96 .	õ.v.		
15.833	0.5956	2.01 .	Q.V.		
15.850	0.5985	2.05 .	Q.V	•	•
15.867	0.6014	2.03 .	Q.V.	•	•
15.883	0.6043		-	•	•
			~	•	•
15.900	0.6074	2.22 .	Q. V.	•	•
15.917	0.6105	2.28 .	Q. V .	•	•
15.933	0.6138	2.34 .	Q. V .	•	•
15.950	0.6171	2.41 .	Q. V .	•	•
15.967	0.6205	2.48 .	Q. V .	•	•
15.983	0.6240	2.55 .	QV.	•	•
16.000	0.6276	2.63 .	QV.	•	
16.017	0.6314	2.72 .	QV.		
16.033	0.6353	2.82 .	.Q V .		
16.050	0.6394	2.96 .	. <u>o</u> v.		
16.067	0.6437	3.13 .	. QV .		
16.083	0.6483	3.33 .	. Q .		•
16.100	0.6532	3.56 .	· · · · ·	•	•
16.117	0.6584	3.81 .		•	•
				•	•
16.133	0.6641	4.10 .	. VQ.	•	•
16.150	0.6701	4.41 .	. V Q .	•	•
16.167	0.6768	4.81 .	. V Q.	•	•
16.183	0.6841	5.30 .	. V .Q	•	•
16.200	0.6920	5.77 .	. V . Q	•	•
16.217	0.7005	6.14 .	. V . Q		•
16.233	0.7093	6.41 .	. V . Q		
16.250	0.7184	6.60 .	. V . Q		
16.267	0.7276	6.71 .	. V . Q		•
16.283	0.7369	6.73 .	. v . õ		
16.300	0.7461	6.68 .	. V . Q		
16.317	0.7552	6.57 .	. V. Q	•	•
16.333	0.7640	6.44 .	. v . v	•	•
16.350	0.7727	6.31 .		•	•
		6.18		•	•
16.367	0.7812		. V . Q	•	•
16.383	0.7896	6.05 .	. V.Q	•	•
16.400	0.7977	5.93 .	. V . Q	•	•
16.417	0.8057	5.80 .	. V . Q	•	•
16.433	0.8135	5.67 .	. V .Q	•	•
16.450	0.8212	5.54 .	. V .Q	•	•
16.467	0.8286	5.41 .	. V .Q	•	
16.483	0.8359	5.29 .	. V.Q		
16.500	0.8430	5.17 .	. V Q		•
16.517	0.8500	5.05 .	. V Q		
16.533	0.8568	4.94 .	. VQ.		
16.550	0.8635	4.83 .	. võ.		
16.567	0.8700	4.74 .	. Q ⁻ .		
16.583	0.8764	4.68 .	. Q.	•	•
16.600	0.8828	4.63 .	. QV.	•	
16.617	0.8891	4.58 .		•	•
16.633			. QV.	•	•
	0.8953	4.53 .	. QV.	•	•
16.650	0.9015	4.47 .	. Q V.	•	•
16.667	0.9076	4.42 .	. Q V.	•	•
16.683	0.9136	4.37 .	. Q V.	•	•
16.700	0.9196	4.32 .	. Q V.	•	•
16.717	0.9255	4.28 .	. Q V.	•	•
16.733	0.9313	4.23 .	. Q V		•
16.750	0.9371	4.18 .	. Q V	•	

16.767	0.9427	4.13			Q	V			
16.783	0.9484	4.08	•		Q	V	•	•	
16.800	0.9539	4.03	•	•	Q	V	•	•	

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated Peak Flow Rate	Duration (minutes)
	=======
0%	1009.0
10%	1009.0
20%	1009.0
30%	600.0
40%	415.0
50%	290.0
60%	200.0
70%	125.0
80%	85.0
90%	50.0

C. APPENDIX – HYDRAULIC RESULTS

BASIN A1 RATING TABLE						
Elevation	Area (SF)	Depth	Volume (cf)	Cumulative Volume (cf)	Storage Volume (Acre-Ft)	Proposed Outlet 20" RCP
538	7,018	0.0	0.0	0.0	0.00	0.00
539	8,989	1.0	8003.7	8003.7	0.18	11.03
540	11,015	2.0	10001.8	18005.4	0.41	15.60
541	13,097	3.0	12055.5	30061.0	0.69	19.10
Dead Storage =			0.00	Acre-Ft		

BASIN A2 RATING TABLE						
Elevation	Area (SF)	Depth	Volume (cf)	Cumulative Volume (cf)	Storage Volume (Acre-Ft)	Proposed Outlet 24" RCP
538	10,296	0.0	0.0	0.0	0.00	0.00
539	12,789	1.0	11542.2	11542.2	0.26	15.88
540	15,338	2.0	14063.6	25605.8	0.59	22.46
541	17,945	3.0	16641.5	42247.2	0.97	27.51
Dead Storage =			0.00	Acre-Ft		

Stage (ft) 0.00 0.32 0.48 0.64 0.81	Area (acres) 0.09 0.09 0.09 0.09	Produced fm Storage (acre-ft) 0.00 0.02 0.03	Q outlet (cfs) 0.00 0.00	Q inf (cfs) 0.00 0.14	Q Total (cfs) 0.00 0.14
0.16 0.32 0.48 0.64 0.81	0.09 0.09	0.02	0.00		
0.32 0.48 0.64 0.81	0.09			0.14	0.14
0.48 0.64 0.81		0.03			
0.64 0.81			0.00	0.14	0.14
0.81		0.05	0.00	0.14	0.14
	0.09	0.06	0.00	0.14	0.14
	0.09	0.08	0.00	0.14	0.14
0.97	0.09	0.09	0.00	0.14	0.14
1.13	0.09	0.11	0.00	0.14	0.14
1.29	0.09	0.12	0.00	0.14	0.14
1.45	0.09	0.14	0.00	0.14	0.14
1.61	0.09	0.15	0.00	0.14	0.14
1.77 1.93	0.09	0.17	0.00	0.14	0.14
2.09	0.09	0.18	0.00	0.14	0.14
2.09	0.09	0.20	0.21	0.14	0.33
2.20	0.09	0.21	0.34	0.14	0.48
2.58	0.09	0.23	0.52	0.14	0.66
2.74	0.09	0.26	0.52	0.14	0.72
2.90	0.09	0.27	0.64	0.14	0.78
3.06	0.09	0.29	0.87	0.14	1.01
3.22	0.09	0.30	1.07	0.14	1.21
3.38	0.09	0.32	1.22	0.14	1.36
3.54	0.09	0.33	1.34	0.14	1.48
3.71	0.09	0.35	1.46	0.14	1.60
3.87	0.09	0.36	1.56	0.14	1.70
4.03	0.09	0.38	1.82	0.14	1.96
4.19	0.09	0.39	2.17	0.14	2.31
4.35	0.09	0.41	2.41	0.14	2.55
4.51	0.09	0.42	2.61	0.14	2.75
4.67	0.09	0.44	2.79	0.14	2.93
4.83	0.09	0.45	2.95	0.14	3.09
4.99	0.09	0.47	3.11	0.14	3.25
5.16	0.09	0.48	3.31	0.14	3.45
5.32	0.09	0.50	3.54	0.14	3.69
5.48	0.09	0.51	3.80	0.14	3.94
5.64	0.09	0.53	4.06	0.14	4.20
5.80	0.09	0.54	4.33	0.14	4.47
5.96	0.09	0.56	4.60	0.14	4.74
6.12	0.09	0.57	4.89	0.14	5.03
6.28	0.09	0.59	5.19	0.14	5.33
6.44	0.09	0.60	5.93	0.14	6.07
6.61	0.09	0.62	6.32	0.14	6.47
6.77	0.09	0.63	6.74	0.14	6.88
6.93	0.09	0.65	7.16	0.14	7.30
7.09	0.09	0.66	7.59	0.14	7.73
7.25	0.09	0.68	8.04	0.14	8.18
7.41	0.09	0.69	8.49	0.14	8.64
7.57	0.09	0.71	8.96	0.14	9.10
7.73	0.09	0.72	9.44	0.14	9.58
7.89	0.09	0.74	9.93	0.14	10.07
8.06 8.22	0.09	0.75	10.42 10.93	0.14	10.56
8.38	0.09	0.77	10.93	0.14	11.07 11.59
8.54	0.09	0.80	11.44	0.14	12.11
8.70	0.09	0.80	12.50	0.14	12.64
8.86	0.09	0.83	13.04	0.14	13.19
9.02	0.09	0.84	13.60	0.14	13.74
9.18	0.09	0.86	14.16	0.14	14.30
9.34	0.09	0.87	14.72	0.14	14.86
9.51	0.09	0.89	15.30	0.14	15.44
9.67	0.09	0.90	15.88	0.14	16.02
9.83	0.09	0.92	16.48	0.14	16.62
9.99	0.09	0.93	17.08	0.14	17.22
10.15	0.09	0.95	17.68	0.14	17.82
10.31	0.09	0.96	18.30	0.14	18.44
10.47	0.09	0.98	18.92	0.14	19.06
10.63	0.09	0.99	19.55	0.14	19.69
10.79	0.09	1.01	20.19	0.14	20.33
10.96	0.09	1.02	20.83	0.14	20.97
11.12	0.09	1.04	21.48	0.14	21.63
11.28	0.09	1.05	22.14	0.14	22.28
11.44	0.09	1.07	22.81	0.14	22.95
11.60	0.09	1.08	23.48	0.14	23.62
11.76	0.09	1.10	24.16	0.14	24.30
11.92	0.09	1.11	24.85	0.14	24.99
12.08	0.09	1.13	25.64	0.14	25.78
12.24	0.09	1.14	27.38	0.14	27.52
12.41	0.09	1.16	29.56	0.14	29.70
12.57	0.09	1.17	31.55	0.14	31.69
12.73	0.09	1.19	32.88	0.14	33.02
12.89	0.09	1.20	33.77	0.14	33.91
13.05	0.09	1.22	34.55	0.14	34.69
	0.09	1.23	35.27	0.14	35.41
13.21	0.09	1.25	35.95 36.59	0.14	36.09
13.21 13.37				U.14	36.74
13.21 13.37 13.53	0.09	1.26			27.25
13.21 13.37 13.53 13.69	0.09 0.09	1.28	37.21	0.14	37.35
13.21 13.37 13.53 13.69 13.86	0.09 0.09 0.09	1.28 1.29	37.21 37.79	0.14 0.14	37.94
13.21 13.37 13.53 13.69 13.86 14.02	0.09 0.09 0.09 0.09	1.28 1.29 1.31	37.21 37.79 38.36	0.14 0.14 0.14	37.94 38.50
13.21 13.37 13.53 13.69 13.86 14.02 14.18	0.09 0.09 0.09 0.09 0.09	1.28 1.29 1.31 1.32	37.21 37.79 38.36 38.90	0.14 0.14 0.14 0.14	37.94 38.50 39.04
13.21 13.37 13.53 13.69 13.86 14.02	0.09 0.09 0.09 0.09	1.28 1.29 1.31	37.21 37.79 38.36	0.14 0.14 0.14	37.94 38.50

			galar ella	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.013		
Channel Slope		0.02000	ft/ft	
Bottom Width		4.50	ft	
Discharge		52.03	ft³/s	
Results				
Normal Depth		0.94	ft	
Flow Area		4.23	ft²	
Wetted Perimeter		6.38	ft	
Hydraulic Radius		0.66	ft	
Top Width		4.50	ft	
Critical Depth		1.61	ft	
Critical Slope		0.00431	ft/ft	
Velocity		12.29	ft/s	
Velocity Head		2.35	ft	
Specific Energy		3.29	ft	
Froude Number		2.24		
Flow Type	Supercritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Downstream Velocity		Infinity	ft/s	
Upstream Velocity		Infinity	ft/s	
Normal Depth		0.94	ft	
Critical Depth		1.61	ft	
Channel Slope		0.02000	ft/ft	
Critical Slope		0.00431	ft/ft	


Worksheet for Off-Site Rectangular Channel

Worksheet for On Site Rectangular Channel

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.01000	ft/ft
Bottom Width		3.00	ft
Discharge		20.31	ft³/s
Results			
Normal Depth		0.88	ft
Flow Area		2.63	ft²
Wetted Perimeter		4.76	ft
Hydraulic Radius		0.55	ft
Top Width		3.00	ft
Critical Depth		1.13	ft
Critical Slope		0.00499	ft/ft
Velocity		7.71	ft/s
Velocity Head		0.92	ft
Specific Energy		1.80	ft
Froude Number		1.45	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.88	ft
Critical Depth		1.13	ft
Channel Slope		0.01000	ft/ft
Critical Slope		0.00499	ft/ft

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Page 1 of 1

