THE RANCH PLAN PLANNED COMMUNITY PLANNING AREAS 3 AND 4 RUNOFF MANAGEMENT PLAN

TECHNICAL APPENDIX G.5

Calibrated Free Draining

F L O O D R O U T I N G A N A L Y S I S USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)

(c) Copyright 1989-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1264

Analysis prepared by:

Michael Baker International 5 Hutton Centre Drive Suite 500 Santa Ana, CA 92707

* ULTIMATE CONDITION - REGIONAL NODE 127

* 2-YR EV JUNE 2019 ROKAMOTO

FILE NAME: EV02127F.DAT

TIME/DATE OF STUDY: 14:17 06/13/2019

** INPUT SUMMARY **

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<

WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE

*USER ENTERED "LAG" TIME = 5.382 HOURS

VALLEY (DEVELOPED) S-GRAPH SELECTED

MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.595; LOW LOSS FRACTION = 0.931

SPECIFIED PEAK RAINFALL DEPTHS(INCH):

5-MINUTE = 0.17; 30-MINUTE = 0.31; 1-HOUR = 0.43

3-HOUR = 0.81; 6-HOUR = 1.20; 24-HOUR = 2.12

*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425

3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>

THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).

ASSUMED REGULAR CHANNEL INFORMATION:

BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00

UPSTREAM ELEVATION(FT) = 341.63; DOWNSTREAM ELEVATION(FT) = 312.40

Date: 06/13/2019 File name: EV02127F.RES Page 1

CHANNEL LENGTH (FT) = 3157.79 MANNING'S FACTOR = 0.030CONSTANT LOSS RATE(CFS) = 0.00 _____ FLOW PROCESS FROM NODE 810.00 TO NODE 12603.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<< ______ WATERSHED AREA = 171.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 0.141 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.348; LOW LOSS FRACTION = 0.638 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39 3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425 3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941 ************************* FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 7 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1 -----FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 6 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<> ______ FLOW PROCESS FROM NODE 12603.00 TO NODE 126.00 IS CODE = 5.2 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<-> _____ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00UPSTREAM ELEVATION(FT) = 312.40; DOWNSTREAM ELEVATION(FT) = 286.00 CHANNEL LENGTH(FT) = 3046.70 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00 ************************ FLOW PROCESS FROM NODE 920.00 TO NODE 126.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<

```
______
 WATERSHED AREA = 553.800 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.292 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE (INCH/HOUR) = 0.509; LOW LOSS FRACTION = 0.862
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
______
********************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
*****************
 FLOW PROCESS FROM NODE 600.00 TO NODE 126.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 185.300 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.323 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.587; LOW LOSS FRACTION = 0.979
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 12720.50 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 286.00; DOWNSTREAM ELEVATION(FT) =
 CHANNEL LENGTH (FT) = 4077.05 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 430.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 315.200 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.299 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.292; LOW LOSS FRACTION = 0.536
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
*******************
 FLOW PROCESS FROM NODE 413.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
_____
 WATERSHED AREA = 124.300 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.203 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.276; LOW LOSS FRACTION = 0.517
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
```

Date: 06/13/2019 File name: EV02127F.RES Page 3 Date: 06/13/2019 File name: EV02127F.RES Page 4

```
*************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
_____
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
______
************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12741.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 258.00; DOWNSTREAM ELEVATION(FT) = 247.00
 CHANNEL LENGTH (FT) = 2294.66 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 320.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 675.500 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.380 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.251; LOW LOSS FRACTION = 0.478
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
***********************
```

File name: EV02127F.RES

Date: 06/13/2019

```
>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #4<
______
 WATERSHED AREA = 195.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.556 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.486; LOW LOSS FRACTION = 0.820
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
***********************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
 >>>>STREAM NUMBER 4 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
 >>>>STREAM NUMBER 4 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 127.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 247.00; DOWNSTREAM ELEVATION(FT) =
                                            240.00
 CHANNEL LENGTH(FT) = 819.00 MANNING'S FACTOR = 0.030
```

FLOW PROCESS FROM NODE 390.00 TO NODE 12741.00 IS CODE = 1

Page 5 Date: 06/13/2019 File name: EV02127F.RES Page 6

```
CONSTANT LOSS RATE (CFS) = 0.00
******************
 FLOW PROCESS FROM NODE 12710.00 TO NODE 127.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 944.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.541 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.592; LOW LOSS FRACTION = 0.985
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
***********************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 11
 >>>>VIEW STREAM NUMBER 1 HYDROGRAPH<
```

```
* AES FLOODSCx PROGRAM RESULTS SUMMARY *
|INPUT FILENAME: [EV02127F.DAT ]
Page: 1 of
|UPSTREAM DOWNSTREAM|
                               | UPSTREAM DOWNSTREAM|
TIME(2) TO | MAX. STORAGE|
| NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) | PEAK (CFS) |
PEAK (HR) | MODELED (AF) | FOOTNOTES |
+------
20.417 |
        | 119.00 12603.00| Convex Routing: Stream #1| 562.2
                                          559.01
20.500 |
| 810.00 | 12603.00| Subarea (UH) Added to Stream #2|
                                         20.81
16.250
| 12603.00 | 12603.00| Stream #2 Added to: Stream #1|
                                   559.0
                                          561.2|
20.500 I
| 12603.00 | 12603.00| Zero Out:
                         Stream #2|
                                   20.8
                                          0.01
| 12603.00 | 126.00| Convex Routing: | Stream #1|
                                   561.2
                                          558.91
20.583
| 920.00 | 126.00| Subarea (UH) Added to Stream #2|
                                   0.0
                                         19.51
16.333 |
         1
| 126.00 | 126.00| Stream #2 Added to: Stream #1|
                                   558.9
                                          561.7|
         20.583 |
| 126.00 | 126.00| Zero Out: | Stream #2|
                                           0.01
| 600.00 | 126.00| Subarea (UH) Added to Stream #2|
                                           0.91
16.417 |
+-----
| 126.00 | 126.00| Stream #2 Added to: Stream #1|
                                          561.81
20.583 |
        | 126.00 | 126.00| Zero Out:
                         Stream #2|
                                   0.9
                                          0.01
        560.61
20.750
| 430.00 12720.50| Subarea (UH) Added to Stream #2|
                                          37.41
16.333 I
| 413.00 | 12720.50| Subarea (UH) Added to Stream #3|
                                          18.4
16.250 I
       _______
| 12720.50 | 12720.50| Stream #3 Added to: Stream #2|
                                          54.01
16.333 |
| 12720.50 | 12720.50 | Zero Out: | Stream #3|
                                  18.4
                                           0.01
| 12720.50 | 12720.50| Stream #2 Added to: Stream #1|
                                   560.6
                                          567.91
20.750 |
       | 12720.50 | 12720.50 | Zero Out: | Stream #2|
                                  54.0
                                           0.0
Date: 06/13/2019 File name: EV02127F.RES
                                    Page 8
```

20.833	1	Convex Routing:				
		++ Subarea (UH) Added to	Stream	#2	0.0	83.0
390.00	12741.00	Subarea (UH) Added to	Stream	#4	0.0	7.1
16.583 12741.00 16.417	12741.00	Stream #4 Added to:	Stream	#2	83.0	89.4
	12741.00	Zero Out:	Stream	#4	7.1	0.0
20.833	1	Stream #2 Added to:				
		 ++		+		+-
12741.00	12741.00	Zero Out:	Stream	#2	89.4	0.0
1 12741.00 20.917	127.00	Convex Routing:	Stream	#1	580.9	580.6
12710.00 16.583	127.00	Subarea (UH) Added to	Stream	#2	0.0	2.9
10.363 127.00 20.917	127.00	Stream #2 Added to:	Stream	#1	580.6	581.1
1	1	Zero Out:				
127.00	127.00	++ View: 3	Stream	#1		581.1
Notes: 1 = INTERVAL	BASIN MODEI	L VOLUME EXCEEDED; 2 =	TIME IS	AT EN	D OF 5-MIN	UTE UNIT

END OF FLOODSCx ROUTING ANALYSIS

F L O O D R O U T I N G A N A L Y S I S USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)

(c) Copyright 1989-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1264

Analysis prepared by:

Michael Baker International 5 Hutton Centre Drive Suite 500 Santa Ana, CA 92707

* RANCHO MISSION VIEJO - CALIBRATED FREE DRAINING UH

* ULTIMATE CONDITION - REGIONAL NODE 133C

* 2-YR EV JUNE 2019 ROKAMOTO

FILE NAME: EV0233CF.DAT

TIME/DATE OF STUDY: 07:10 06/12/2019

** INPUT SUMMARY **

FLOW PROCESS FROM NODE 10100.00 TO NODE 119.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<<<<

WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE *USER ENTERED "LAG" TIME = 5.382 HOURS

VALLEY (DEVELOPED) S-GRAPH SELECTED

MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.595; LOW LOSS FRACTION = 0.931

SPECIFIED PEAK RAINFALL DEPTHS(INCH):

5-MINUTE = 0.17; 30-MINUTE = 0.33; 1-HOUR = 0.44

3-HOUR = 0.84; 6-HOUR = 1.25; 24-HOUR = 2.20

*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408

3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936

FLOW PROCESS FROM NODE 119.00 TO NODE 12603.00 IS CODE = 5.2

._____

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>

THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO

ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).

ASSUMED REGULAR CHANNEL INFORMATION:

BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00

UPSTREAM ELEVATION(FT) = 341.63; DOWNSTREAM ELEVATION(FT) = 312.40

CHANNEL LENGTH (FT) = 3157.79 MANNING'S FACTOR = 0.030CONSTANT LOSS RATE(CFS) = 0.00 _____ FLOW PROCESS FROM NODE 810.00 TO NODE 12603.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<< WATERSHED AREA = 171.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 0.141 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.348; LOW LOSS FRACTION = 0.638 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40 3-HOUR = 0.67; 6-HOUR = 0.92; 24-HOUR = 1.56*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408 3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936 ************************* FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 7 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1 -----FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 6 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<> ______ FLOW PROCESS FROM NODE 12603.00 TO NODE 126.00 IS CODE = 5.2 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<-> _____ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00UPSTREAM ELEVATION(FT) = 312.40; DOWNSTREAM ELEVATION(FT) = 286.00 CHANNEL LENGTH(FT) = 3046.70 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00 ************************ FLOW PROCESS FROM NODE 920.00 TO NODE 126.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<

```
______
 WATERSHED AREA = 553.800 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.292 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE (INCH/HOUR) = 0.509; LOW LOSS FRACTION = 0.862
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.67; 6-HOUR = 0.92; 24-HOUR = 1.56
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
______
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
*****************
 FLOW PROCESS FROM NODE 600.00 TO NODE 126.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 185.300 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.323 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.587; LOW LOSS FRACTION = 0.979
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.67; 6-HOUR = 0.92; 24-HOUR = 1.56
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 12720.50 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 286.00; DOWNSTREAM ELEVATION(FT) =
 CHANNEL LENGTH (FT) = 4077.05 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 430.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 315.200 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.299 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.292; LOW LOSS FRACTION = 0.536
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.67; 6-HOUR = 0.92; 24-HOUR = 1.56
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
*******************
 FLOW PROCESS FROM NODE 413.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
_____
 WATERSHED AREA = 124.300 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.203 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.276; LOW LOSS FRACTION = 0.517
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.67; 6-HOUR = 0.92; 24-HOUR = 1.56
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
```

Date: 06/13/2019 File name: EV0233CF.RES Page 3 Date: 06/13/2019 File name: EV0233CF.RES Page 4

```
*************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
_____
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
______
************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12741.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 258.00; DOWNSTREAM ELEVATION(FT) = 247.00
 CHANNEL LENGTH (FT) = 2294.66 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 320.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 675.500 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.380 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.251; LOW LOSS FRACTION = 0.478
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.67; 6-HOUR = 0.92; 24-HOUR = 1.56
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
***********************
```

```
>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #4<
______
 WATERSHED AREA = 195.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.556 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.486; LOW LOSS FRACTION = 0.820
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.67; 6-HOUR = 0.92; 24-HOUR = 1.56
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
***********************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
 >>>>STREAM NUMBER 4 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
 >>>>STREAM NUMBER 4 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 127.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 247.00; DOWNSTREAM ELEVATION(FT) =
                                            240.00
 CHANNEL LENGTH(FT) = 819.00 MANNING'S FACTOR = 0.030
```

FLOW PROCESS FROM NODE 390.00 TO NODE 12741.00 IS CODE = 1

Date: 06/13/2019 File name: EV0233CF.RES Page 5 Date: 06/13/2019 File name: EV0233CF.RES Page 6

```
CONSTANT LOSS RATE (CFS) = 0.00
******************
 FLOW PROCESS FROM NODE 12710.00 TO NODE 127.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 944.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.541 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.592; LOW LOSS FRACTION = 0.985
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.67; 6-HOUR = 0.92; 24-HOUR = 1.56
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 240.00; DOWNSTREAM ELEVATION(FT) =
                                               215.00
 CHANNEL LENGTH (FT) = 3242.32
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
FLOW PROCESS FROM NODE 50220.00 TO NODE 50347.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
```

Date: 06/13/2019

```
WATERSHED AREA = 1120.700 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.427 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.434; LOW LOSS FRACTION = 0.737
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.67; 6-HOUR = 0.92; 24-HOUR = 1.56
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
FLOW PROCESS FROM NODE 50347.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 313.00; DOWNSTREAM ELEVATION(FT) =
                                                215.00
 CHANNEL LENGTH (FT) = 2700.00
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 129.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 215.00; DOWNSTREAM ELEVATION(FT) =
                                                213.00
 CHANNEL LENGTH(FT) = 1663.10 MANNING'S FACTOR = 0.030
```

File name: EV0233CF.RES Page 7 Date: 06/13/2019 File name: EV0233CF.RES Page 8

```
CONSTANT LOSS RATE (CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 50400.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 420.000 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.256 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.553; LOW LOSS FRACTION = 0.923
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.67; 6-HOUR = 0.92; 24-HOUR = 1.56
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 214.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.274 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.253; LOW LOSS FRACTION = 0.494
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.67; 6-HOUR = 0.92; 24-HOUR = 1.56
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 213.00; DOWNSTREAM ELEVATION(FT) =
                                                     212.00
 CHANNEL LENGTH (FT) = 1389.52 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 13010.00 TO NODE 132.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 4924.400 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 1.262 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.487; LOW LOSS FRACTION = 0.830
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.67; 6-HOUR = 0.92; 24-HOUR = 1.56
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
*******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 13305.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 427.51; DOWNSTREAM ELEVATION(FT) =
                                                     315.00
 CHANNEL LENGTH (FT) = 9760.05
                           MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE (CFS) = 0.00
```

File name: EV0233CF.RES

Date: 06/13/2019

Date: 06/13/2019 File name: EV0233CF.RES Page 9

Page 10

```
______
*************************
 FLOW PROCESS FROM NODE 13305.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 315.00; DOWNSTREAM ELEVATION(FT) =
                                            212.00
 CHANNEL LENGTH (FT) = 6877.24
                       MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE(CFS) = 0.00
_____
*******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
______
 WATERSHED AREA = 1715.900 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.947 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.449; LOW LOSS FRACTION = 0.750
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.67; 6-HOUR = 0.92; 24-HOUR = 1.56
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
**********************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
```

*****	******	*****	*****	*****	*****	*****
FLOW PRO	CESS FROM NODE	133.00 TO	NODE 133	.00 IS CODE	= 6	
>>>>STR	EAM NUMBER 2 CLE	ARED AND SE	T TO ZERO<<<	<<		
=======		=======	=======		======	======
******	******	*****	*****	*****	*****	*****
FLOW PRO	CESS FROM NODE	133.00 TO	NODE 133	.00 IS CODE	= 11	
>>>>VIE	N STREAM NUMBER	1 HYDROGRAP	H<<<<			

Date: 06/13/2019 File name: EV0233CF.RES Page 11 Date: 06/13/2019 File name: EV0233CF.RES Page 12

'		* AE	S FLOODSC:	x I	PROGRAM RESU	LTS SUMMARY
	-	33CF.DAT]				
	+-			+		
UPSTREAM		++			UPSTREAM	DOWNSTREAM
NODE #	NODE #	GE HYDROLOGIC/HYDRAULIC F) FOOTNOTES	PROCESS		PEAK (CFS)	PEAK (CFS)
+		++				
10100.00 0.417	119.00	Subarea (UH) Added to	Stream	#1	0.0	555.9
119.00	12603.00	Convex Routing:	Stream	#1	555.9	554.3
810.00	12603.00	Subarea (UH) Added to	Stream	#2	0.0	19.1
6.167 12603.00	 12603.00	Stream #2 Added to:	Stream	#1	554.3	556.6
	12603.00	Zero Out:				
12603.00	126.00	++ Convex Routing:				
0.583 920.00	126.00	 Subarea (UH) Added to				
		Stream #2 Added to:				
0.583 126.00	126.00	Zero Out:	Stream	#2	18.8	0.0
		 Subarea (UH) Added to 				
+-		++				
126.00 0.583	126.00	Stream #2 Added to: Zero Out:	Stream	#1	558.3	558.4
126.00	126.00	Zero Out:	Stream	#2	0.9	0.0
126.00 0.750		Convex Routing:	Stream	#1	558.4	557.6
430.00	12720.50	Subarea (UH) Added to	Stream	#2	0.0	35.5
6.250 I	1	Subarea (UH) Added to				
+-		++				
12720.50 6.333	12720.50	Stream #3 Added to:	Stream	#2	35.5	50.9
12720.50	12720.50		Stream	#3	17.1	0.0
12720.50 0.750	12720.50	Stream #2 Added to:	Stream	#1	557.6	565.1
1 12720.50	12720.50	Zero Out:	Stream	#2	50.9	0.0

320.00 12741.00 Subarea (UH) Added to Stream #2 0.0 78 16.417	1 565.1 564.8			_		
16.417				++		+
16.583				I		16.417
12741.00				I		16.583
12741.00	4 6.9 0.0	#4	Stream			
12741.00	1 564.8 578.9	#1			1	20.833
20.833	2 84.8 0.0	#2		++		+
12710.00	1 578.9 578.7	#1	Stream	Convex Routing:	127.00	12741.00
127.00	2 0.0 2.8	#2	Stream			12710.00
127.00	1 578.7 579.2	#1	Stream			127.00
127.00				Zero Out:	127.00	127.00
50220.00				++		127.00
50347.00 12902.00 Convex Routing: Stream #2 63.4 62 16.583	2 0.0 63.4	#2	Stream	Subarea (UH) Added to		50220.00
12902.00 12902.00 Stream #2 Added to: Stream #1 578.9 589 20.917	2 63.4 62.8	#2	Stream	Convex Routing:		50347.00
12902.00 12902.00 Zero Out: Stream #2 62.8 0	1 578.9 589.7	#1	Stream			12902.00
12902.00 129.00 Convex Routing: Stream #1 589.7 589.21.083				Zero Out:	12902.00	12902.00
21.083				++		+
129.00 129.00 Stream #2 Added to: Stream #1 589.5 590 129.00 129.00 Zero Out: Stream #2 8.4 0 129.00 129.00 Zero Out: Stream #2 8.4 0 210.00 129.00 Subarea (UH) Added to Stream #2 0.0 27 6.333					1	21.083
129.00 129.00 Zero Out: Stream #2 8.4 0						16.333 129.00
16.333	2 8.4 0.0	#2	Stream	Zero Out:		
Notes: 1 = BASIN MODEL VOLUME EXCEEDED; 2 = TIME IS AT END OF 5-MINUTE UNI INTERVAL 3 = RUNOFF ESTIMATES DO NOT EXTEND PAST 2 DAYS AFTER THE PEAK DAY OF THE DESIGN STORM				i i	1	16.333
	AT END OF 5-MINUTE UNIT	AT	TIME IS	L VOLUME EXCEEDED; 2 =	BASIN MODEI RUNOFF ESTI	Notes: 1 = INTERVAL
·+	 _	-				

UPSTREAM I	DOWNSTREAM				UPS	TREAM	DOWNSTREAM
FIME(2) TO NODE # PEAK (HR) +	NODE # :	HYDROLOGIO) FOOTNO	C/HYDRAULIC TES				
	129.00	Stream #2	Added to:				
129.00	129.00	Zero Out:	1	Stream	#2	27.7	0.0
129.00 21.167	133.00	Convex Ro		Stream	#1	594.4	594.2
13010.00	132.00	Subarea (UH) Added to	Stream	#2	0.0	145.2
17.333 132.00 17.917	13305.00		uting:				
		-+	+				
13305.00 18.250							
132.00			1				
7.167	133.00			Stream	#2	143.0	209.1
133.00	133.00			Stream	#3	77.8	0.0
133.00 17.583	133.00	Stream #2					
133.00	133.00	-+ Zero Out:	+				0.0
 133.00 17.583	133.00	View:		Stream	#1		766.4
Notes: 1 = INTERVAL 3 = ITHE DESIGN ST	BASIN MODEL	VOLUME E	+ XCEEDED; 2 = NOT EXTEND F	TIME IS	AT END	OF 5-M	INUTE UNIT

Date: 06/13/2019 File name: EV0233CF.RES Page 15 Date: 06/13/2019 File name: EV0233CF.RES Page 16

F L O O D R O U T I N G A N A L Y S I S USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)

(c) Copyright 1989-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1264

Analysis prepared by:

Michael Baker International 5 Hutton Centre Drive Suite 500 Santa Ana, CA 92707

* RANCHO MISSION VIEJO - CALIBRATED FREE DRAINING UH

* ULTIMATE CONDITION - REGIONAL NODE 133U

* 2-YR EV JUNE 2019 ROKAMOTO

FILE NAME: EV0233UF.DAT

TIME/DATE OF STUDY: 07:13 06/12/2019

** INPUT SUMMARY **

FLOW PROCESS FROM NODE 10100.00 TO NODE 119.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<

WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE *USER ENTERED "LAG" TIME = 5.382 HOURS

VALLEY (DEVELOPED) S-GRAPH SELECTED

MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.595; LOW LOSS FRACTION = 0.931 SPECIFIED PEAK RAINFALL DEPTHS(INCH):

5-MINUTE = 0.18; 30-MINUTE = 0.33; 1-HOUR = 0.45

3-HOUR = 0.85; 6-HOUR = 1.26; 24-HOUR = 2.23

3 HOOK 0.00, 0 HOOK 1.20, 21 HOOK 2.23

*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422

3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940

FLOW PROCESS FROM NODE 119.00 TO NODE 12603.00 IS CODE = 5.2

._____

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>

THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).

ASSUMED REGULAR CHANNEL INFORMATION:

Date: 06/13/2019

BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00

UPSTREAM ELEVATION(FT) = 341.63; DOWNSTREAM ELEVATION(FT) = 312.40

File name: EV0233UF.RES Page 1

CHANNEL LENGTH (FT) = 3157.79 MANNING'S FACTOR = 0.030CONSTANT LOSS RATE(CFS) = 0.00 _____ FLOW PROCESS FROM NODE 810.00 TO NODE 12603.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<< ______ WATERSHED AREA = 171.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 0.141 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.348; LOW LOSS FRACTION = 0.638 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41 3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422 3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940************************* FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 7 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1 -----FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 6 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<> ______ FLOW PROCESS FROM NODE 12603.00 TO NODE 126.00 IS CODE = 5.2 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<-> _____ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00UPSTREAM ELEVATION(FT) = 312.40; DOWNSTREAM ELEVATION(FT) = 286.00 CHANNEL LENGTH(FT) = 3046.70 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00 ************************ FLOW PROCESS FROM NODE 920.00 TO NODE 126.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<

```
______
 WATERSHED AREA = 553.800 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.292 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE (INCH/HOUR) = 0.509; LOW LOSS FRACTION = 0.862
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
______
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
*****************
 FLOW PROCESS FROM NODE 600.00 TO NODE 126.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 185.300 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.323 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.587; LOW LOSS FRACTION = 0.979
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 12720.50 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 286.00; DOWNSTREAM ELEVATION(FT) =
 CHANNEL LENGTH (FT) = 4077.05 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 430.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 315.200 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.299 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.292; LOW LOSS FRACTION = 0.536
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
*******************
 FLOW PROCESS FROM NODE 413.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
_____
 WATERSHED AREA = 124.300 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.203 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.276; LOW LOSS FRACTION = 0.517
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
```

Date: 06/13/2019 File name: EV0233UF.RES Page 3 Date: 06/13/2019 File name: EV0233UF.RES Page 4

```
*************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 TS CODE = 7
_____
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
______
************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12741.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 258.00; DOWNSTREAM ELEVATION(FT) = 247.00
 CHANNEL LENGTH (FT) = 2294.66 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 320.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 675.500 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.380 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.251; LOW LOSS FRACTION = 0.478
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
**********************
```

```
>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #4<
______
 WATERSHED AREA = 195.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.556 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.486; LOW LOSS FRACTION = 0.820
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
***********************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
 >>>>STREAM NUMBER 4 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
 >>>>STREAM NUMBER 4 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 127.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 247.00; DOWNSTREAM ELEVATION(FT) =
                                            240.00
 CHANNEL LENGTH(FT) = 819.00 MANNING'S FACTOR = 0.030
```

FLOW PROCESS FROM NODE 390.00 TO NODE 12741.00 IS CODE = 1

Date: 06/13/2019 File name: EV0233UF.RES Page 5 Date: 06/13/2019 File name: EV0233UF.RES Page 6

```
CONSTANT LOSS RATE (CFS) = 0.00
FLOW PROCESS FROM NODE 12710.00 TO NODE 127.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 944.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.541 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.592; LOW LOSS FRACTION = 0.985
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 240.00; DOWNSTREAM ELEVATION(FT) =
                                               215.00
 CHANNEL LENGTH (FT) = 3242.32
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
_____
FLOW PROCESS FROM NODE 50220.00 TO NODE 50347.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
```

```
WATERSHED AREA = 1120.700 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.427 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.434; LOW LOSS FRACTION = 0.737
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
FLOW PROCESS FROM NODE 50347.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 313.00; DOWNSTREAM ELEVATION(FT) =
                                                215.00
 CHANNEL LENGTH (FT) = 2700.00
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 129.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 215.00; DOWNSTREAM ELEVATION(FT) =
                                                213.00
 CHANNEL LENGTH(FT) = 1663.10 MANNING'S FACTOR = 0.030
```

Date: 06/13/2019 File name: EV0233UF.RES Page 7 Date: 06/13/2019 File name: EV0233UF.RES Page 8

```
CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 50400.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 420.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.256 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.553; LOW LOSS FRACTION = 0.923
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
*******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 214.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.274 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.253; LOW LOSS FRACTION = 0.494
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
*************************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 213.00; DOWNSTREAM ELEVATION(FT) =
                                            212.00
 CHANNEL LENGTH (FT) = 1389.52 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 11
 >>>>VIEW STREAM NUMBER 1 HYDROGRAPH<
_____
```

Date: 06/13/2019 File name: EV0233UF.RES Page 9 Date: 06/13/2019 File name: EV0233UF.RES Page 10

+		* AES	FLOODSC	Cx E	PROGRAM RESU	LTS SUMMARY
 INPUT FILEN Page: 1 of +	1	33UF.DAT]		4		
UPSTREAM D	OOWNSTREAM	++				DOWNSTREAM
NODE #	NODE #	HYDROLOGIC/HYDRAULIC I				
10100.00	119.00	Subarea (UH) Added to	Stream	#1	0.0	601.8
119.00	12603.00	Convex Routing:	Stream	#1	601.8	597.7
810.00	12603.00	Subarea (UH) Added to	Stream	#2	0.0	20.8
12603.00	12603.00	Stream #2 Added to:	Stream	#1	597.7	600.0
12603.00	12603.00	Zero Out:				
12603.00	126.00	++ Convex Routing:				
6.333	126.00	Subarea (UH) Added to				
126.00	126.00	Stream #2 Added to:	Stream	#1	597.2	600.1
	126.00	Zero Out:	Stream	#2	20.2	0.0
6.417	1	Subarea (UH) Added to				
126.00	126.00	++ Stream #2 Added to:	Stream	#1	600.1	600.2
126.00	126.00	Zero Out:	Stream	#2	1.0	0.0
126.00	12720.50	Convex Routing:	Stream	#1	600.2	598.7
430.00	12720.50	Subarea (UH) Added to	Stream	#2	0.0	38.4
6.250 I	1	Subarea (UH) Added to				
		 ++		+		+
12720.50 6.333	12720.50	Stream #3 Added to:	Stream	#2	38.4	55.2
12720.50		Zero Out:	Stream	#3	18.8	0.0
0 750 I	12720.50	Stream #2 Added to:	Stream	#1	598.7	606.2
12720.50	12720.50	Zero Out:	Stream	#2	55.2	0.0
Date	e: 06/13/2019	File name: EV0233UF.	RES		Pa	ge 11

		Convex Routing:				
+-		++ Subarea (UH) Added to				
16.417 390.00	 12741.00	 Subarea (UH) Added to	Stream	#4	0.0	7.4
16.583 12741.00	12741.00	Stream #4 Added to:	Stream	#2	85.6	92.4
16.417 12741.00	12741.00	Zero Out:	Stream	#4	7.4	0.0
		Stream #2 Added to:				619.4
		++			92.4	
1 12741.00 20.917	127.00	Convex Routing:	Stream	#1	619.4	619.0
12710.00	127.00	Subarea (UH) Added to				
10.303 127.00 20.917	127.00	Stream #2 Added to:	Stream	#1	619.0	619.6
127.00	127.00	Zero Out:				
+-		++ Convex Routing:				
	50347.00	Subarea (UH) Added to	Stream	#2	0.0	67.7
50347.00	12902.00	Convex Routing:	Stream	#2	67.7	67.1
21.000		Stream #2 Added to:				
	1	Zero Out:				
		++ Convex Routing:	Stream	#1	629.8	629.1
21.083	1	 Subarea (UH) Added to				
16.333 129.00	129.00	 Stream #2 Added to:	Stream	#1	629.1	630.2
21.083	129.00		Stream		9.0	0.0
16 222 1	1	 Subarea (UH) Added to 				
Notes: 1 = INTERVAL 3 = THE DESIGN ST	BASIN MODEI	VOLUME EXCEEDED; 2 =	TIME IS	AT EN		JTE UNIT
		+				

* AES FLOODSCx PROGRAM RESULTS SUMMARY * |INPUT FILENAME: [EV0233UF.DAT] Page: 2 of | -----+ | UPSTREAM DOWNSTREAM| |UPSTREAM DOWNSTREAM| TIME(2) TO | MAX. STORAGE| | | NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) | PEAK (CFS) | PEAK (HR) | MODELED (AF) | FOOTNOTES | | 129.00 | 129.00| Stream #2 Added to: Stream #1| 630.2 634.0| 21.083 | 129.00 | 129.00| Zero Out: Stream #2| 30.7 0.0| 21.167 | 133.00 | 133.00| View: Stream #1| 633.1| 21.167 | 761.02| 3 | -----+ |Notes: 1 = BASIN MODEL VOLUME EXCEEDED; 2 = TIME IS AT END OF 5-MINUTE UNIT 3 = RUNOFF ESTIMATES DO NOT EXTEND PAST 2 DAYS AFTER THE PEAK DAY OF THE DESIGN STORM

END OF FLOODSCx ROUTING ANALYSIS

Date: 06/13/2019 File name: EV0233UF.RES Page 13 Date: 06/13/2019 File name: EV0233UF.RES Page 14

F L O O D R O U T I N G A N A L Y S I S USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)

(c) Copyright 1989-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1264

Analysis prepared by:

Michael Baker International 5 Hutton Centre Drive Suite 500 Santa Ana, CA 92707

 * RANCHO MISSION VIEJO - CALIBRATED FREE DRAINING UH

* ULTIMATE CONDITION - REGIONAL NODE 134C

* 2-YR EV JUNE 2019 ROKAMOTO

FILE NAME: EV0234CF.DAT

TIME/DATE OF STUDY: 07:05 06/12/2019

** INPUT SUMMARY **

FLOW PROCESS FROM NODE 10100.00 TO NODE 119.00 IS CODE = 1

....

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<

WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE

*USER ENTERED "LAG" TIME = 5.382 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED

MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.595; LOW LOSS FRACTION = 0.931

SPECIFIED PEAK RAINFALL DEPTHS (INCH):

5-MINUTE = 0.17; 30-MINUTE = 0.31; 1-HOUR = 0.43

3-HOUR = 0.81; 6-HOUR = 1.20; 24-HOUR = 2.12

*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397

3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933

FLOW PROCESS FROM NODE 119.00 TO NODE 12603.00 IS CODE = 5.2

FLOW PROCESS FROM NODE 119.00 TO NODE 12003.00 TS CODE = 5.2

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<

THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).

ASSUMED REGULAR CHANNEL INFORMATION:

BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00

UPSTREAM ELEVATION(FT) = 341.63; DOWNSTREAM ELEVATION(FT) = 312.40

ago 1

CONSTANT LOSS RATE(CFS) = 0.00 _____ FLOW PROCESS FROM NODE 810.00 TO NODE 12603.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<< WATERSHED AREA = 171.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 0.141 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.348; LOW LOSS FRACTION = 0.638 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39 3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397 3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933************************* FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 7 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1 -----FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 6 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<> ______ FLOW PROCESS FROM NODE 12603.00 TO NODE 126.00 IS CODE = 5.2 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<-> _____ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00UPSTREAM ELEVATION(FT) = 312.40; DOWNSTREAM ELEVATION(FT) = 286.00 CHANNEL LENGTH(FT) = 3046.70 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00 ************************ FLOW PROCESS FROM NODE 920.00 TO NODE 126.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<

MANNING'S FACTOR = 0.030

CHANNEL LENGTH (FT) = 3157.79

```
______
 WATERSHED AREA = 553.800 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.292 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE (INCH/HOUR) = 0.509; LOW LOSS FRACTION = 0.862
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
______
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
*****************
 FLOW PROCESS FROM NODE 600.00 TO NODE 126.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 185.300 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.323 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.587; LOW LOSS FRACTION = 0.979
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 12720.50 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 286.00; DOWNSTREAM ELEVATION(FT) =
 CHANNEL LENGTH (FT) = 4077.05 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 430.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 315.200 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.299 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.292; LOW LOSS FRACTION = 0.536
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 413.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
_____
 WATERSHED AREA = 124.300 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.203 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.276; LOW LOSS FRACTION = 0.517
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
```

Date: 06/13/2019 File name: EV0234CF.RES Page 3 Date: 06/13/2019 File name: EV0234CF.RES Page 4

```
*************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
_____
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
______
************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12741.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 258.00; DOWNSTREAM ELEVATION(FT) = 247.00
 CHANNEL LENGTH (FT) = 2294.66 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 320.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 675.500 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.380 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.251; LOW LOSS FRACTION = 0.478
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
**********************
```

```
>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #4<
______
 WATERSHED AREA = 195.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.556 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.486; LOW LOSS FRACTION = 0.820
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
***********************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
 >>>>STREAM NUMBER 4 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
 >>>>STREAM NUMBER 4 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 127.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 247.00; DOWNSTREAM ELEVATION(FT) =
                                            240.00
 CHANNEL LENGTH(FT) = 819.00 MANNING'S FACTOR = 0.030
```

FLOW PROCESS FROM NODE 390.00 TO NODE 12741.00 IS CODE = 1

Date: 06/13/2019 File name: EV0234CF.RES Page 5 Date: 06/13/2019 File name: EV0234CF.RES Page 6

```
CONSTANT LOSS RATE (CFS) = 0.00
******************
 FLOW PROCESS FROM NODE 12710.00 TO NODE 127.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 944.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.541 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.592; LOW LOSS FRACTION = 0.985
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 240.00; DOWNSTREAM ELEVATION(FT) =
                                               215.00
 CHANNEL LENGTH (FT) = 3242.32
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
_____
FLOW PROCESS FROM NODE 50220.00 TO NODE 50347.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
```

File name: EV0234CF.RES

Date: 06/13/2019

```
WATERSHED AREA = 1120.700 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.427 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.434; LOW LOSS FRACTION = 0.737
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
FLOW PROCESS FROM NODE 50347.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 313.00; DOWNSTREAM ELEVATION(FT) =
                                                215.00
 CHANNEL LENGTH (FT) = 2700.00
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 129.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 215.00; DOWNSTREAM ELEVATION(FT) =
                                                213.00
 CHANNEL LENGTH(FT) = 1663.10 MANNING'S FACTOR = 0.030
```

```
CONSTANT LOSS RATE (CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 50400.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 420.000 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.256 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.553; LOW LOSS FRACTION = 0.923
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 214.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.274 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.253; LOW LOSS FRACTION = 0.494
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 213.00; DOWNSTREAM ELEVATION(FT) =
                                                     212.00
 CHANNEL LENGTH (FT) = 1389.52 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 13010.00 TO NODE 132.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 4924.400 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 1.262 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.487; LOW LOSS FRACTION = 0.830
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 13305.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 427.51; DOWNSTREAM ELEVATION(FT) =
                                                     315.00
 CHANNEL LENGTH (FT) = 9760.05
                           MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE (CFS) = 0.00
```

File name: EV0234CF.RES

Page 10

Date: 06/13/2019

```
______
******************
 FLOW PROCESS FROM NODE 13305.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 315.00; DOWNSTREAM ELEVATION(FT) =
                                             212.00
 CHANNEL LENGTH (FT) = 6877.24 MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE(CFS) = 0.00
_____
****************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
______
 WATERSHED AREA = 1715.900 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.947 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.449; LOW LOSS FRACTION = 0.750
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
***********************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
_____
FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
______
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
*************************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<->
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 212.00; DOWNSTREAM ELEVATION(FT) = 173.00
 CHANNEL LENGTH (FT) = 6461.31 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 1691.600 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.391 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.487; LOW LOSS FRACTION = 0.818
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
*************************
```

Date: 06/13/2019 File name: EV0234CF.RES Page 11 Date: 06/13/2019 File name: EV0234CF.RES Page 12

```
FLOW PROCESS FROM NODE 13500.00 TO NODE 134.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 3859.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 2.983 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.567; LOW LOSS FRACTION = 0.908
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.51
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
********************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
*******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 11
 >>>>VIEW STREAM NUMBER 1 HYDROGRAPH<
```

```
* AES FLOODSCx PROGRAM RESULTS SUMMARY *
|INPUT FILENAME: [EV0234CF.DAT ]
Page: 1 of
|UPSTREAM DOWNSTREAM|
                                | UPSTREAM DOWNSTREAM|
TIME(2) TO | MAX. STORAGE|
| NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) | PEAK (CFS) |
PEAK (HR) | MODELED (AF) | FOOTNOTES |
+------
20.417 |
        | 119.00 12603.00| Convex Routing: Stream #1|
                                    528.8
                                         527.61
20.500 |
| 810.00 | 12603.00| Subarea (UH) Added to Stream #2|
                                          18.1
16.250
| 12603.00 | 12603.00| Stream #2 Added to: Stream #1|
                                    527.6
                                           529.81
20.500 I
| 12603.00 | 12603.00| Zero Out:
                         Stream #2|
                                   18.1
                                          0.01
| 12603.00 | 126.00| Convex Routing: | Stream #1|
                                           528.91
20.583
| 920.00 | 126.00| Subarea (UH) Added to Stream #2|
                                    0.0
                                          17.71
16.333 I
         1
| 126.00 | 126.00| Stream #2 Added to: Stream #1|
                                    528.9
                                          531.7|
         20.583 |
| 126.00 | 126.00| Zero Out: | Stream #2|
                                           0.01
| 600.00 | 126.00| Subarea (UH) Added to Stream #2|
                                           0.91
16.417 |
+-----
| 126.00 | 126.00| Stream #2 Added to: Stream #1|
                                          531.8|
20.583
| 126.00 | 126.00| Zero Out:
                        Stream #2|
                                    0.9
                                          0.01
        | 126.00 12720.50| Convex Routing: Stream #1|
                                    531.8
                                          531.11
20.750
| 430.00 12720.50| Subarea (UH) Added to Stream #2|
                                           33.4
16.333 I
| 413.00 | 12720.50| Subarea (UH) Added to Stream #3|
                                           16.2|
16.250 I
       _______
| 12720.50 | 12720.50| Stream #3 Added to: Stream #2|
                                           48.01
16.333 |
| 12720.50 | 12720.50 | Zero Out: | Stream #3|
                                  16.2
                                          0.01
| 12720.50 | 12720.50| Stream #2 Added to: Stream #1|
                                           538.41
       20.750 |
| 12720.50 | 12720.50 | Zero Out: | Stream #2|
                                   48.0
                                           0.0
Date: 06/13/2019 File name: EV0234CF.RES
                                    Page 14
```

		Convex Routing:				
320.00		Subarea (UH) Added to				
	12741.00	Subarea (UH) Added to	Stream	#4	0.0	6.6
	12741.00	Stream #4 Added to:	Stream	#2	74.0	79.9
	12741.00	Zero Out:	Stream	#4	6.6	0.0
12741.00 20.833	12741.00	Stream #2 Added to:	Stream	#1	538.2	551.9
+-		++				
12741.00	12741.00	Zero Out:	Stream	#2	79.9	0.0
12741.00 20.833	127.00	Convex Routing:	Stream	#1	551.9	551.8
12710.00 16.583	127.00	Subarea (UH) Added to	Stream	#2	0.0	2.7
127.00	127.00	Stream #2 Added to:	Stream	#1	551.8	552.3
127.00	127.00	Zero Out:	Stream	#2	2.7	0.0
+-		Convex Routing:				
50220.00	50347.00	Subarea (UH) Added to	Stream	#2	0.0	59.9
50347.00		Convex Routing:	Stream	#2	59.9	59.2
	12902.00	Stream #2 Added to:	Stream	#1	552.1	562.6
		Zero Out:				
•	•			+-		+
21.000						
50400.00 16.333	129.00	Subarea (UH) Added to	Stream	#2	0.0	7.9
129.00	129.00	Stream #2 Added to:	Stream	#1	562.4	563.5
129.00			Stream	#2	7.9	0.0
		Subarea (UH) Added to				
Notes: 1 = INTERVAL	BASIN MODEI	L VOLUME EXCEEDED; 2 =	TIME IS	S AT AYS A	END OF 5-MINU	TE UNIT
		File name: EV0234CF.			Page 15	

I		* AE	S FLOODSO	Cx F	ROGRAM RESU	LTS SUMMARY
Page: 2 of		34CF.DAT]		+		
+ UPSTREAM	DOWNSTREAM	++ GE				DOWNSTREAM
NODE #	NODE #	HYDROLOGIC/HYDRAULIC F) FOOTNOTES				
129.00	129.00	Stream #2 Added to:	Stream	#1	563.5	567.2
129.00	129.00	Zero Out:	Stream	#2	26.0	0.0
129.00	133.00	Convex Routing:	Stream	#1	567.2	567.0
1.167 13010.00	132.00	Subarea (UH) Added t	o Stream	#2	0.0	138.0
	13305.00	Convex Routing:				
+		 ++		+		
13305.00 8.250		Convex Routing:	Stream	#2	136.6	136.0
132.00	133.00	Subarea (UH) Added t	o Stream	#3	0.0	73.8
133.00 7.167	133.00	Stream #3 Added to:	Stream	#2	136.0	199.3
133.00	133.00	Zero Out:	Stream	#3	73.8	0.0
7.583	133.00	Stream #2 Added to:				
+		++				
		Zero Out:				
		Convex Routing:				
6.417 I		Subarea (UH) Added t				
134.00 7.167		Stream #2 Added to:	Stream	#1	733.5	775.5
134.00	134.00	Zero Out:	Stream	#2	63.6	0.0
13500.00		+ ++ Subarea (UH) Added t	o Stream	#21	0.0	50.4
8.500	T.	Stream #2 Added to:				
7.250	1	Zero Out:			50.4	
134.00		I				
134.00	134.00	vrew:	Stream	#⊥		821.7

File name: EV0234CF.RES

Page 17

Date: 06/13/2019

++	
+	
Notes: 1 = BASIN MODEL VOLUME EXCEEDED; 2 = TIME IS AT END OF 5-MINUTE UNIT	
INTERVAL	
3 = RUNOFF ESTIMATES DO NOT EXTEND PAST 2 DAYS AFTER THE PEAK DAY OF	
THE DESIGN STORM	
+	-
+	

END OF FLOODSCx ROUTING ANALYSIS

F L O O D R O U T I N G A N A L Y S I S USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)

(c) Copyright 1989-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1264

Analysis prepared by:

Michael Baker International 5 Hutton Centre Drive Suite 500 Santa Ana, CA 92707

* RANCHO MISSION VIEJO - CALIBRATED FREE DRAINING UH

* ULTIMATE CONDITION - REGIONAL NODE 134U

* 2-YR EV JUNE 2019 ROKAMOTO

FILE NAME: EV0234UF.DAT

TIME/DATE OF STUDY: 07:06 06/12/2019

** INPUT SUMMARY **

FLOW PROCESS FROM NODE 10100.00 TO NODE 119.00 IS CODE = 1

FLOW PROCESS FROM NODE 10100.00 TO NODE 119.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<

WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE

*USER ENTERED "LAG" TIME = 5.382 HOURS

VALLEY (DEVELOPED) S-GRAPH SELECTED

MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.595; LOW LOSS FRACTION = 0.931

SPECIFIED PEAK RAINFALL DEPTHS(INCH):

5-MINUTE = 0.17; 30-MINUTE = 0.32; 1-HOUR = 0.44

3-HOUR = 0.82; 6-HOUR = 1.23; 24-HOUR = 2.17

*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405

3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936

FLOW PROCESS FROM NODE 119.00 TO NODE 12603.00 IS CODE = 5.2

._____

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>

THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology,

Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).

ASSUMED REGULAR CHANNEL INFORMATION:

Date: 06/13/2019

BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00

UPSTREAM ELEVATION(FT) = 341.63; DOWNSTREAM ELEVATION(FT) = 312.40

File name: EV0234UF.RES

Page 1

CHANNEL LENGTH (FT) = 3157.79 MANNING'S FACTOR = 0.030CONSTANT LOSS RATE(CFS) = 0.00 _____ FLOW PROCESS FROM NODE 810.00 TO NODE 12603.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<< WATERSHED AREA = 171.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 0.141 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.348; LOW LOSS FRACTION = 0.638 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40 3-HOUR = 0.66; 6-HOUR = 0.91; 24-HOUR = 1.54 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405 3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936************************* FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 7 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1 -----FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 6 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<> ______ FLOW PROCESS FROM NODE 12603.00 TO NODE 126.00 IS CODE = 5.2 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<-> _____ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00UPSTREAM ELEVATION(FT) = 312.40; DOWNSTREAM ELEVATION(FT) = 286.00 CHANNEL LENGTH(FT) = 3046.70 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00 ************************ FLOW PROCESS FROM NODE 920.00 TO NODE 126.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<

```
______
 WATERSHED AREA = 553.800 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.292 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.509; LOW LOSS FRACTION = 0.862
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.66; 6-HOUR = 0.91; 24-HOUR = 1.54
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
______
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
*****************
 FLOW PROCESS FROM NODE 600.00 TO NODE 126.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 185.300 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.323 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.587; LOW LOSS FRACTION = 0.979
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.66; 6-HOUR = 0.91; 24-HOUR = 1.54
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 12720.50 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 286.00; DOWNSTREAM ELEVATION(FT) =
 CHANNEL LENGTH (FT) = 4077.05 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 430.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 315.200 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.299 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.292; LOW LOSS FRACTION = 0.536
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.66; 6-HOUR = 0.91; 24-HOUR = 1.54
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
*******************
 FLOW PROCESS FROM NODE 413.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
_____
 WATERSHED AREA = 124.300 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.203 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.276; LOW LOSS FRACTION = 0.517
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.66; 6-HOUR = 0.91; 24-HOUR = 1.54
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
```

Date: 06/13/2019 File name: EV0234UF.RES Page 3 Date: 06/13/2019 File name: EV0234UF.RES Page 4

```
*************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
_____
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
______
************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12741.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 258.00; DOWNSTREAM ELEVATION(FT) = 247.00
 CHANNEL LENGTH (FT) = 2294.66 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 320.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 675.500 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.380 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.251; LOW LOSS FRACTION = 0.478
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.66; 6-HOUR = 0.91; 24-HOUR = 1.54
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
************************
```

```
>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #4<
______
 WATERSHED AREA = 195.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.556 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.486; LOW LOSS FRACTION = 0.820
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.66; 6-HOUR = 0.91; 24-HOUR = 1.54
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
***********************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
 >>>>STREAM NUMBER 4 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
 >>>>STREAM NUMBER 4 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 127.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 247.00; DOWNSTREAM ELEVATION(FT) =
                                            240.00
 CHANNEL LENGTH(FT) = 819.00 MANNING'S FACTOR = 0.030
```

FLOW PROCESS FROM NODE 390.00 TO NODE 12741.00 IS CODE = 1

Date: 06/13/2019 File name: EV0234UF.RES Page 5 Date: 06/13/2019 File name: EV0234UF.RES Page 6

```
CONSTANT LOSS RATE (CFS) = 0.00
******************
 FLOW PROCESS FROM NODE 12710.00 TO NODE 127.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 944.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.541 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.592; LOW LOSS FRACTION = 0.985
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.66; 6-HOUR = 0.91; 24-HOUR = 1.54
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 240.00; DOWNSTREAM ELEVATION(FT) =
                                               215.00
 CHANNEL LENGTH (FT) = 3242.32
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
_____
FLOW PROCESS FROM NODE 50220.00 TO NODE 50347.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
```

```
WATERSHED AREA = 1120.700 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.427 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.434; LOW LOSS FRACTION = 0.737
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.66; 6-HOUR = 0.91; 24-HOUR = 1.54
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
FLOW PROCESS FROM NODE 50347.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 313.00; DOWNSTREAM ELEVATION(FT) =
                                                215.00
 CHANNEL LENGTH (FT) = 2700.00
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 129.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 215.00; DOWNSTREAM ELEVATION(FT) =
                                               213.00
 CHANNEL LENGTH(FT) = 1663.10 MANNING'S FACTOR = 0.030
```

Date: 06/13/2019 File name: EV0234UF.RES Page 7 Date: 06/13/2019 File name: EV0234UF.RES Page 8

```
CONSTANT LOSS RATE (CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 50400.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 420.000 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.256 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.553; LOW LOSS FRACTION = 0.923
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.66; 6-HOUR = 0.91; 24-HOUR = 1.54
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 214.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.274 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.253; LOW LOSS FRACTION = 0.494
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.66; 6-HOUR = 0.91; 24-HOUR = 1.54
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 213.00; DOWNSTREAM ELEVATION(FT) =
                                                     212.00
 CHANNEL LENGTH (FT) = 1389.52 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 13010.00 TO NODE 132.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 4924.400 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 1.262 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.487; LOW LOSS FRACTION = 0.830
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.66; 6-HOUR = 0.91; 24-HOUR = 1.54
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
*******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 13305.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 427.51; DOWNSTREAM ELEVATION(FT) =
                                                     315.00
 CHANNEL LENGTH (FT) = 9760.05
                           MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE (CFS) = 0.00
```

File name: EV0234UF.RES

Page 10

Date: 06/13/2019

```
______
*******************
 FLOW PROCESS FROM NODE 13305.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 315.00; DOWNSTREAM ELEVATION(FT) =
                                             212.00
 CHANNEL LENGTH (FT) = 6877.24 MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE(CFS) = 0.00
_____
****************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
______
 WATERSHED AREA = 1715.900 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.947 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.449; LOW LOSS FRACTION = 0.750
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.66; 6-HOUR = 0.91; 24-HOUR = 1.54
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
***********************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
_____
FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
*************************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<->
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 212.00; DOWNSTREAM ELEVATION(FT) = 173.00
 CHANNEL LENGTH (FT) = 6461.31 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 1691.600 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.391 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.487; LOW LOSS FRACTION = 0.818
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.30; 1-HOUR = 0.40
  3-HOUR = 0.66; 6-HOUR = 0.91; 24-HOUR = 1.54
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
*******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
*************************
```

Date: 06/13/2019 File name: EV0234UF.RES Page 11 Date: 06/13/2019 File name: EV0234UF.RES Page 12

FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 11

>>>>VIEW STREAM NUMBER 1 HYDROGRAPH

* AES FLOODSCx PROGRAM RESULTS SUMMARY * |INPUT FILENAME: [EV0234UF.DAT] Page: 1 of -----+ |UPSTREAM DOWNSTREAM| | UPSTREAM DOWNSTREAM| TIME(2) TO | MAX. STORAGE| | NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) | PEAK (CFS) | PEAK (HR) | MODELED (AF) | FOOTNOTES | 20.417 | | 119.00 | 12603.00| Convex Routing: Stream #1| 543.6 | 542.2| 20.500 | | 810.00 | 12603.00| Subarea (UH) Added to Stream #2| 0.0 18.81 16.167 | 12603.00 | 12603.00| Stream #2 Added to: Stream #1| 542.2 544.4| 20.500 | | 12603.00 | 12603.00| Zero Out: 0.0| Stream #2| 18.8 | 12603.00 | 126.00 | Convex Routing: | Stream #1 | 544.4 543.51 20.583 | 920.00 | 126.00| Subarea (UH) Added to Stream #2| 0.0 18.51 16.333 I | 126.00 | 126.00| Stream #2 Added to: Stream #1| 543.5 546.31 20.583 I | 126.00 | 126.00| Zero Out: | Stream #2| 18.5 0.01 | 600.00 | 126.00| Subarea (UH) Added to Stream #2| 0.91 16.417 | +-----| 126.00 | 126.00| Stream #2 Added to: Stream #1| 546.3 546.5 20.583 | 126.00 | 126.00| Zero Out: Stream #2| 0.9 0.0 546.5 | 126.00 12720.50| Convex Routing: Stream #1| 545.71 20.750 | | 430.00 | 12720.50| Subarea (UH) Added to Stream #2| 0.0 35.1| 16.333 I | 413.00 | 12720.50| Subarea (UH) Added to Stream #3| 16.91 16.250 I _______ | 12720.50 | 12720.50| Stream #3 Added to: Stream #2| 35.1 50.31 16.333 | 0.01 | 12720.50 | 12720.50| Stream #2 Added to: Stream #1| 553.11 20.750 | | 12720.50 | 12720.50 | Zero Out: | Stream #2| 50.3 0.0

Date: 06/13/2019 File name: EV0234UF.RES

Page 14

20.833	1	Convex Routing:				
+-		++ Subarea (UH) Added to				
390.00	12741.00	Subarea (UH) Added to	Stream	#4	0.0	6.9
		Stream #4 Added to:				
16.417 12741.00	12741.00	Zero Out:	Stream	#4	6.9	0.0
12741.00	12741.00	Stream #2 Added to:	Stream	#1	552.9	566.8
+-		++				
		Zero Out:				
12741.00 20.833	127.00	Convex Routing:	Stream	#1	566.8	566.6
12710.00 16.583	127.00	Subarea (UH) Added to	Stream	#2	0.0	2.8
127.00	127.00	Stream #2 Added to:	Stream	#1	566.6	567.2
20.833 127.00 	127.00 	Zero Out:	Stream	#2	2.8	0.0
		++ Convex Routing:	Stream	#1	567.2	566.9
50220.00 16.500	50347.00	Subarea (UH) Added to	Stream	#2	0.0	62.6
	12902.00	Convex Routing:	Stream	#2	62.6	62.0
12902.00 20.917	12902.00	Stream #2 Added to:	Stream	#1	566.9	577.6
12902.00		Zero Out:				
+-		++				
21.000 I	1	Convex Routing:				
50400.00 16.333	129.00	Subarea (UH) Added to Stream #2 Added to:	Stream	#2	0.0	8.3
129.00 21.000	129.00		Stream	#1	577.3	578.4
129.00	129.00	Zero Out:	Stream	#2	8.3	0.0
16.333	1	Subarea (UH) Added to				27.2
	BASIN MODE	L VOLUME EXCEEDED; 2 =	TIME IS	S AT E	END OF 5-MINU	TE UNIT

```
* AES FLOODSCx PROGRAM RESULTS SUMMARY *
|INPUT FILENAME: [EV0234UF.DAT ]
Page: 2 of |
|UPSTREAM DOWNSTREAM|
                                 | UPSTREAM DOWNSTREAM|
TIME(2) TO | MAX. STORAGE|
| NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) PEAK (CFS) |
PEAK (HR) | MODELED (AF) | FOOTNOTES |
| 129.00 | 129.00| Stream #2 Added to: Stream #1| 578.4
                                            582.21
21.000 |
| 129.00 | 129.00| Zero Out:
                         Stream #2| 27.2
                                            0.01
| 129.00 | 133.00 | Convex Routing: | Stream #1 | 582.2
                                            582.01
         21.167 |
| 13010.00 | 132.00| Subarea (UH) Added to Stream #2| 0.0 | 143.0|
17.333 |
        | 132.00 13305.00| Convex Routing:
                          Stream #2| 143.0
                                            141.5|
17.750 I
        140.81
18.250
| 132.00 | 133.00| Subarea (UH) Added to Stream #3| 0.0
                                            76.71
17.000 I
| 133.00 | 133.00 | Stream #3 Added to: Stream #2| 140.8
                                            205.51
17.167 I
         133.00
        133.00| Zero Out: Stream #3| 76.7
                                           0.0
| 133.00 | 133.00| Stream #2 Added to: Stream #1|
                                     582.0
                                            752.81
| 133.00 | 133.00| Zero Out:
                     Stream #2| 205.5 0.0|
| 133.00 | 134.00 | Convex Routing: Stream #1 | 752.8 | 752.0 |
         17.833 |
| 133.00 | 134.00| Subarea (UH) Added to Stream #2| 0.0 66.6|
16.417 |
         134.00| Stream #2 Added to: Stream #1| 752.0 798.9|
| 134.00
17.167 I
         | 134.00 | 134.00| Zero Out:
                                   66.6
                          Stream #2|
                                            0.01
| 134.00 | 134.00| View:
                          Stream #1|
17.167 | 909.26| 3 |
-----+
|Notes: 1 = BASIN MODEL VOLUME EXCEEDED; 2 = TIME IS AT END OF 5-MINUTE UNIT
3 = RUNOFF ESTIMATES DO NOT EXTEND PAST 2 DAYS AFTER THE PEAK DAY OF
THE DESIGN STORM
```

Date: 06/13/2019 File name: EV0234UF.RES Page 17

+-----

END OF FLOODSCx ROUTING ANALYSIS

F L O O D R O U T I N G A N A L Y S I S USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)

(c) Copyright 1989-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1264

Analysis prepared by:

Michael Baker International 5 Hutton Centre Drive, Suite 500 Santa Ana, CA 92707

* RANCHO MISSION VIEJO - CALIBRATED FREE DRAINING UH

* ULTIMATE CONDITION - REGIONAL NODE 133U

* 2-YR EV APRIL 2019 FKAZI

FILE NAME: EV0233UF.DAT

TIME/DATE OF STUDY: 10:31 04/16/2019

** INPUT SUMMARY **

FLOW PROCESS FROM NODE 10100.00 TO NODE 119.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<<<<<

WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE *USER ENTERED "LAG" TIME = 5.382 HOURS

VALLEY (DEVELOPED) S-GRAPH SELECTED

MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.595; LOW LOSS FRACTION = 0.931 SPECIFIED PEAK RAINFALL DEPTHS(INCH):

5-MINUTE = 0.18; 30-MINUTE = 0.33; 1-HOUR = 0.45

2 HOUR 0.10, 30 MINOID 0.33, 1 HOUR 0.13

3-HOUR = 0.85; 6-HOUR = 1.27; 24-HOUR = 2.23

*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422

3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940

FLOW PROCESS FROM NODE 119.00 TO NODE 12603.00 IS CODE = 5.2

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>

THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).

ASSUMED REGULAR CHANNEL INFORMATION:

BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00

UPSTREAM ELEVATION(FT) = 341.63; DOWNSTREAM ELEVATION(FT) = 312.40

Page 1

Date: 06/11/2019

File name: FV0533UF.RFS

Page 2

_____ FLOW PROCESS FROM NODE 810.00 TO NODE 12603.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<< ______ WATERSHED AREA = 171.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 0.308 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.348; LOW LOSS FRACTION = 0.638 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41 3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422 3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940************************* FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 7 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1 -----FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 6 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<> ______ FLOW PROCESS FROM NODE 12603.00 TO NODE 126.00 IS CODE = 5.2 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>> _____ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00UPSTREAM ELEVATION(FT) = 312.40; DOWNSTREAM ELEVATION(FT) = 286.00 CHANNEL LENGTH(FT) = 3046.70 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE (CFS) = 0.00******************** FLOW PROCESS FROM NODE 920.00 TO NODE 126.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<

MANNING'S FACTOR = 0.030

CHANNEL LENGTH (FT) = 3157.79

CONSTANT LOSS RATE(CFS) = 0.00

```
______
 WATERSHED AREA = 553.800 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.292 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.509; LOW LOSS FRACTION = 0.862
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
______
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*****************
 FLOW PROCESS FROM NODE 600.00 TO NODE 126.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 185.300 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.323 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.587; LOW LOSS FRACTION = 0.979
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 12720.50 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 286.00; DOWNSTREAM ELEVATION(FT) =
 CHANNEL LENGTH (FT) = 4077.05 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 430.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 315.200 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.589 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.292; LOW LOSS FRACTION = 0.536
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
*******************
 FLOW PROCESS FROM NODE 413.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
WATERSHED AREA = 124.300 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.457 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.276; LOW LOSS FRACTION = 0.517
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
```

Date: 06/11/2019 File name: EV0533UF.RES Page 3 Date: 06/11/2019 File name: EV0533UF.RES Page 4

```
*************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 TS CODE = 7
_____
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
______
************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12741.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 258.00; DOWNSTREAM ELEVATION(FT) = 247.00
 CHANNEL LENGTH (FT) = 2294.66 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
*****************
 FLOW PROCESS FROM NODE 320.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 675.500 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.439 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.251; LOW LOSS FRACTION = 0.478
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
**********************
```

```
>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #4<
______
 WATERSHED AREA = 195.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.865 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.486; LOW LOSS FRACTION = 0.820
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
***********************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
 >>>>STREAM NUMBER 4 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
 >>>>STREAM NUMBER 4 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 127.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 247.00; DOWNSTREAM ELEVATION(FT) =
                                            240.00
 CHANNEL LENGTH(FT) = 819.00 MANNING'S FACTOR = 0.030
```

FLOW PROCESS FROM NODE 390.00 TO NODE 12741.00 IS CODE = 1

Date: 06/11/2019 File name: EV0533UF.RES Page 5 Date: 06/11/2019 File name: EV0533UF.RES Page 6

```
CONSTANT LOSS RATE (CFS) = 0.00
FLOW PROCESS FROM NODE 12710.00 TO NODE 127.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 944.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.541 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.592; LOW LOSS FRACTION = 0.985
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 240.00; DOWNSTREAM ELEVATION(FT) =
                                               215.00
 CHANNEL LENGTH (FT) = 3242.32
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
FLOW PROCESS FROM NODE 50220.00 TO NODE 50347.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
```

```
WATERSHED AREA = 1120.700 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.427 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.434; LOW LOSS FRACTION = 0.737
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
FLOW PROCESS FROM NODE 50347.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 313.00; DOWNSTREAM ELEVATION(FT) =
                                                215.00
 CHANNEL LENGTH (FT) = 2700.00
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 129.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 215.00; DOWNSTREAM ELEVATION(FT) =
                                                213.00
 CHANNEL LENGTH(FT) = 1663.10 MANNING'S FACTOR = 0.030
```

Date: 06/11/2019 File name: EV0533UF.RES Page 7 Date: 06/11/2019 File name: EV0533UF.RES Page 8

```
CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 50400.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 420.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.256 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.553; LOW LOSS FRACTION = 0.923
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
*******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 214.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.274 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.253; LOW LOSS FRACTION = 0.494
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.31; 1-HOUR = 0.41
  3-HOUR = 0.68; 6-HOUR = 0.94; 24-HOUR = 1.58
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
*************************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 213.00; DOWNSTREAM ELEVATION(FT) =
                                            212.00
 CHANNEL LENGTH (FT) = 1389.52 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 11
 >>>>VIEW STREAM NUMBER 1 HYDROGRAPH<
_____
```

Date: 06/11/2019 File name: EV0533UF.RES Page 9 Date: 06/11/2019 File name: EV0533UF.RES Page 10

```
* AES FLOODSCx PROGRAM RESULTS SUMMARY *
|INPUT FILENAME: [EV0233UF.DAT ]
Page: 1 of
|UPSTREAM DOWNSTREAM|
                                      | UPSTREAM DOWNSTREAM|
TIME(2) TO | MAX. STORAGE|
| NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) | PEAK (CFS) |
PEAK (HR) | MODELED (AF) | FOOTNOTES |
| 10100.00
         119.00| Subarea (UH) Added to Stream #1| 0.0
                                                   614.4|
20.417 |
          | 119.00 12603.00| Convex Routing:
                            Stream #1|
                                          614.4
                                                   609.61
20.500 |
810.00 12603.00| Subarea (UH) Added to Stream #2|
                                                   16.01
16.333 |
          | 12603.00 | 12603.00| Stream #2 Added to: Stream #1|
                                          609.6
                                                   611.9|
| 12603.00 | 12603.00| Zero Out:
                              Stream #2|
                                          16.0
                                                   0.01
| 12603.00 | 126.00| Convex Routing:
                              Stream #1|
                                          611.9
                                                   608.81
20.667 |
          920.00 126.00| Subarea (UH) Added to Stream #2| 0.0
                                                   20.2|
16.333 I
         126.00| Stream #2 Added to: Stream #1|
                                          608.8
126.00
                                                   611.6
20.667 |
           1 126.00
         126.00| Zero Out:
                              Stream #2|
                                           20.2
                                                  0.01
| 600.00 | 126.00| Subarea (UH) Added to Stream #2|
                                                    1.01
16.417 |
| 126.00 | 126.00| Stream #2 Added to: Stream #1|
                                                   611.8|
20.667 |
          | 126.00 | 126.00| Zero Out:
                              Stream #2|
                                          1.0
                                                   0.0
                | 126.00 12720.50| Convex Routing: Stream #1|
                                          611.8
                                                   609.8|
20.750 |
         | 430.00 | 12720.50| Subarea (UH) Added to Stream #2|
                                           0.0
                                                   30.7|
16.667 I
| 413.00 | 12720.50| Subarea (UH) Added to Stream #3|
                                                   13.6
16.500 I
| 12720.50 | 12720.50| Stream #3 Added to: Stream #2| 30.7
                                                   43.2|
         16.583 I
| 12720.50 | 12720.50| Zero Out:
                              Stream #3| 13.6
                                                  0.01
         | 12720.50 | 12720.50| Stream #2 Added to: Stream #1|
                                          609.8
                                                  617.61
         | 12720.50 | 12720.50 | Zero Out: Stream #2|
                                         43.2
                                                  0.0
Date: 06/11/2019 File name: EV0533UF.RES
                                           Page 11
```

		Convex Routing:			
+-		++ Subarea (UH) Added to			
16.500		Subarea (UH) Added to			
	12741.00	Stream #4 Added to:	Stream #2	81.7	87.7
16.500 12741.00	12741.00	Zero Out:	Stream #4	6.8	0.0
		Stream #2 Added to:			630.9
		Zero Out:			
1 12741.00 20.917	127.00	Convex Routing:	Stream #1	630.9	630.5
12710.00	127.00	Subarea (UH) Added to			
1 127.00	127.00	Stream #2 Added to:	Stream #1	630.5	631.0
127.00	127.00	Zero Out:			
127.00		++ Convex Routing:			
21.000 50220.00 16.500	50347.00	Subarea (UH) Added to	Stream #2	0.0	67.7
		Convex Routing:	Stream #2	67.7	67.1
	12902.00	Stream #2 Added to:	Stream #1	630.4	641.2
12902.00	12902.00	Zero Out:			
+-		++ Convex Routing:			
21.083 L	1	Subarea (UH) Added to			
16.333		Stream #2 Added to:			
21.083	129.00		Stream #2	9.0	0.0
16.333	1	Subarea (UH) Added to			
Notes: 1 = INTERVAL 3 = THE DESIGN ST	BASIN MODEI RUNOFF ESTI	L VOLUME EXCEEDED; 2 =	TIME IS AT	END OF 5-MIN	NUTE UNIT
		+			

* AES FLOODSCx PROGRAM RESULTS SUMMARY * |INPUT FILENAME: [EV0233UF.DAT] Page: 2 of | -----+ | UPSTREAM DOWNSTREAM| |UPSTREAM DOWNSTREAM| TIME(2) TO | MAX. STORAGE| | | NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) | PEAK (CFS) | PEAK (HR) | MODELED (AF) | FOOTNOTES | | 129.00 | 129.00| Stream #2 Added to: Stream #1| 641.4 645.2| 21.083 | 129.00 | 129.00| Zero Out: Stream #2| 30.7 0.0| 21.167 | 133.00 | 133.00| View: Stream #1| 644.1| 21.167 | 765.25| 3 | -----+ |Notes: 1 = BASIN MODEL VOLUME EXCEEDED; 2 = TIME IS AT END OF 5-MINUTE UNIT 3 = RUNOFF ESTIMATES DO NOT EXTEND PAST 2 DAYS AFTER THE PEAK DAY OF THE DESIGN STORM

END OF FLOODSCx ROUTING ANALYSIS

Date: 06/11/2019 File name: EV0533UF.RES Page 13 Date: 06/11/2019 File name: EV0533UF.RES Page 14

F L O O D R O U T I N G A N A L Y S I S USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)

(c) Copyright 1989-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1264

Analysis prepared by:

Michael Baker International 5 Hutton Centre Drive Suite 500 Santa Ana, CA 92707

* RANCHO MISSION VIEJO - CALIBRATED FREE DRAINING UH

* ULTIMATE CONDITION - REGIONAL NODE 137

* 2-YR EV JUNE 2019 ROKAMOTO

FILE NAME: EV02137F.DAT

TIME/DATE OF STUDY: 07:05 06/12/2019

** INPUT SUMMARY **

FLOW PROCESS FROM NODE 10100.00 TO NODE 119.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<

WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE

*USER ENTERED "LAG" TIME = 5.382 HOURS

VALLEY (DEVELOPED) S-GRAPH SELECTED

MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.595; LOW LOSS FRACTION = 0.931

SPECIFIED PEAK RAINFALL DEPTHS(INCH):

5-MINUTE = 0.17; 30-MINUTE = 0.31; 1-HOUR = 0.43

3-HOUR = 0.80; 6-HOUR = 1.20; 24-HOUR = 2.12

*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394

3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933

FLOW PROCESS FROM NODE 119.00 TO NODE 12603.00 IS CODE = 5.2

FLOW PROCESS FROM NODE 119.00 TO NODE 12003.00 IS CODE = 3.2

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>

THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology,

Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).

ASSUMED REGULAR CHANNEL INFORMATION:

Date: 06/13/2019

BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00

UPSTREAM ELEVATION(FT) = 341.63; DOWNSTREAM ELEVATION(FT) = 312.40

File name: EV02137F.RES Page 1

CHANNEL LENGTH (FT) = 3157.79 MANNING'S FACTOR = 0.030CONSTANT LOSS RATE(CFS) = 0.00 _____ FLOW PROCESS FROM NODE 810.00 TO NODE 12603.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<< WATERSHED AREA = 171.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 0.141 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.348; LOW LOSS FRACTION = 0.638 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39 3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.50*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394 3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933************************* FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 7 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1 -----FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 6 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<> ______ FLOW PROCESS FROM NODE 12603.00 TO NODE 126.00 IS CODE = 5.2 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>> _____ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00UPSTREAM ELEVATION(FT) = 312.40; DOWNSTREAM ELEVATION(FT) = 286.00 CHANNEL LENGTH(FT) = 3046.70 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00 ************************ FLOW PROCESS FROM NODE 920.00 TO NODE 126.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<

```
______
 WATERSHED AREA = 553.800 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.292 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.509; LOW LOSS FRACTION = 0.862
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.50
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
______
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 600.00 TO NODE 126.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 185.300 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.323 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.587; LOW LOSS FRACTION = 0.979
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.50
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 12720.50 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 286.00; DOWNSTREAM ELEVATION(FT) =
 CHANNEL LENGTH (FT) = 4077.05 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 430.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 315.200 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.299 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.292; LOW LOSS FRACTION = 0.536
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.50
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 413.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
_____
 WATERSHED AREA = 124.300 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.203 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.276; LOW LOSS FRACTION = 0.517
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.50
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
```

Date: 06/13/2019 File name: EV02137F.RES Page 3 Date: 06/13/2019 File name: EV02137F.RES Page 4

```
*************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
_____
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
______
************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12741.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 258.00; DOWNSTREAM ELEVATION(FT) = 247.00
 CHANNEL LENGTH (FT) = 2294.66 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 320.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 675.500 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.380 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.251; LOW LOSS FRACTION = 0.478
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.50
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
***********************
```

File name: EV02137F.RES

Page 5

Date: 06/13/2019

```
>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #4<
______
 WATERSHED AREA = 195.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.556 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.486; LOW LOSS FRACTION = 0.820
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.50
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
***********************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
 >>>>STREAM NUMBER 4 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
 >>>>STREAM NUMBER 4 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 127.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 247.00; DOWNSTREAM ELEVATION(FT) =
                                            240.00
 CHANNEL LENGTH(FT) = 819.00 MANNING'S FACTOR = 0.030
```

FLOW PROCESS FROM NODE 390.00 TO NODE 12741.00 IS CODE = 1

```
CONSTANT LOSS RATE (CFS) = 0.00
FLOW PROCESS FROM NODE 12710.00 TO NODE 127.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 944.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.541 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.592; LOW LOSS FRACTION = 0.985
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.17; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.50
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 240.00; DOWNSTREAM ELEVATION(FT) =
                                               215.00
 CHANNEL LENGTH (FT) = 3242.32
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
FLOW PROCESS FROM NODE 50220.00 TO NODE 50347.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<
```

File name: EV02137F.RES

Page 7

Date: 06/13/2019

```
WATERSHED AREA = 1120.700 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.427 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.434; LOW LOSS FRACTION = 0.737
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.50
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
FLOW PROCESS FROM NODE 50347.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 313.00; DOWNSTREAM ELEVATION(FT) =
                                                215.00
 CHANNEL LENGTH (FT) = 2700.00
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 129.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 215.00; DOWNSTREAM ELEVATION(FT) =
                                                213.00
 CHANNEL LENGTH(FT) = 1663.10 MANNING'S FACTOR = 0.030
```

```
CONSTANT LOSS RATE (CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 50400.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 420.000 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.256 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.553; LOW LOSS FRACTION = 0.923
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.50
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 214.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.274 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.253; LOW LOSS FRACTION = 0.494
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.50
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 213.00; DOWNSTREAM ELEVATION(FT) =
                                                     212.00
 CHANNEL LENGTH (FT) = 1389.52 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 13010.00 TO NODE 132.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 4924.400 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 1.262 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.487; LOW LOSS FRACTION = 0.830
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.50
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 13305.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 427.51; DOWNSTREAM ELEVATION(FT) =
                                                     315.00
 CHANNEL LENGTH (FT) = 9760.05
                           MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE (CFS) = 0.00
```

File name: EV02137F.RES

Date: 06/13/2019

```
______
*******************
 FLOW PROCESS FROM NODE 13305.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <<->
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 315.00; DOWNSTREAM ELEVATION(FT) =
                                             212.00
 CHANNEL LENGTH (FT) = 6877.24 MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE(CFS) = 0.00
_____
****************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
______
 WATERSHED AREA = 1715.900 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.947 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.449; LOW LOSS FRACTION = 0.750
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.50
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
***********************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
_____
FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
______
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
*************************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<->
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 212.00; DOWNSTREAM ELEVATION(FT) = 173.00
 CHANNEL LENGTH (FT) = 6461.31 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 1691.600 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.391 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.487; LOW LOSS FRACTION = 0.818
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.50
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
*************************
```

Date: 06/13/2019 File name: EV02137F.RES Page 11 Date: 06/13/2019 File name: EV02137F.RES Page 12

```
FLOW PROCESS FROM NODE 13500.00 TO NODE 134.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 3859.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 2.983 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.567; LOW LOSS FRACTION = 0.908
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.50
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 137.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 173.00; DOWNSTREAM ELEVATION(FT) =
                                              133.00
 CHANNEL LENGTH (FT) = 6064.09
                         MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
_____
FLOW PROCESS FROM NODE 134.00 TO NODE 137.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 1191.900 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.533 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE (INCH/HOUR) = 0.474; LOW LOSS FRACTION = 0.781
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
```

```
5-MINUTE = 0.14; 30-MINUTE = 0.29; 1-HOUR = 0.39
  3-HOUR = 0.65; 6-HOUR = 0.89; 24-HOUR = 1.50
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 6
>>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
******************
FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 11
>>>>VIEW STREAM NUMBER 1 HYDROGRAPH<
______
_____
```

Date: 06/13/2019 File name: EV02137F.RES Page 13 Date: 06/13/2019 File name: EV02137F.RES Page 14

 		* AES	FLOODSO	Cx E	PROGRAM RESU	LTS SUMMARY
INPUT FILEN	1	37F.DAT]				
+- UPSTREAM I	OOWNSTREAM	++				DOWNSTREAM
NODE #	NODE #	HYDROLOGIC/HYDRAULIC F) FOOTNOTES				
	119.00	++ Subarea (UH) Added to	Stream	#1	0.0	525.3
119.00	12603.00	Convex Routing:	Stream	#1	525.3	524.0
810.00	12603.00	Subarea (UH) Added to	Stream	#2	0.0	17.9
12603.00	12603.00	Stream #2 Added to:	Stream	#1	524.0	526.2
		Zero Out:				
+- 12603.00	126.00	++ Convex Routing:				
		Subarea (UH) Added to	Stream	#2	0.0	17.6
6.333 126.00 0.583	126.00	Stream #2 Added to:	Stream	#1	525.4	528.1
126.00	126.00	Zero Out:	Stream	#2	17.6	0.0
6.417 I	1	Subarea (UH) Added to				
	126.00	++ Stream #2 Added to:	Stream	#1	528.1	528.3
0.583 126.00	126.00	Zero Out:	Stream	#2	0.9	0.0
126.00 .750	12720.50	Convex Routing:	Stream	#1	528.3	527.6
430.00 430.00 5.333	12720.50	Subarea (UH) Added to	Stream	#2	0.0	33.2
413.00 5.250	1	Subarea (UH) Added to				
		 ++		+		
		Stream #3 Added to:	Stream	#2	33.2	47.7
12720.50		Zero Out:	Stream	#3	16.0	0.0
12720.50 .750	12720.50	Stream #2 Added to:	Stream	#1	527.6	534.7
12720.50			Stream	#2	47.7	0.0

320.00 12741.00 Subarea (UH) Added to Stream #2 0.0 73.6 16.417			Convex Routing:			
390.00 12741.00 Subarea (UH) Added to Stream #4 0.0 6.5 16.583	+-		++			
12741.00 12741.00 Stream #4 Added to: Stream #2 73.6	390.00	12741.00	 Subarea (UH) Added to	Stream =	#4 0	.0 6.5
16.417	12741.00	12741.00	Stream #4 Added to:	Stream =	#2 73	.6 79.5
20.833						
12741.00 12741.00 Zero Out: Stream #2 79.5 0.0	20 022 1	1	1			
12710.00	+-		++			
12710.00 127.00 Subarea (UH) Added to Stream #2 0.0 2.7 16.583	12741.00	127.00	Convex Routing:	Stream	#1 548	.1 548.0
127.00	12710.00	127.00	Subarea (UH) Added to	Stream :	#2 0	.0 2.7
127.00	127.00	127.00	Stream #2 Added to:	Stream :	#1 548	.0 548.5
127.00	127.00	127.00	Zero Out:			
16.500	127.00	12902.00	Convex Routing:	Stream :	#1 548	.5 548.3
12902.00 12902.00 Zero Out: Stream #2 58.9 0.0	50220.00	50347.00	Subarea (UH) Added to	Stream :	#2 0	.0 59.5
12902.00 12902.00 Zero Out: Stream #2 58.9 0.0	50347.00	12902.00	Convex Routing:	Stream =	#2 59	.5 58.9
12902.00	12902.00 20.917	12902.00	Stream #2 Added to:	Stream	#1 548	.3 558.6
12902.00 129.00 Convex Routing: Stream #1 558.6 558.4 21.000	12902.00	12902.00	Zero Out:	Stream :	#2 58	.9 0.0
21.000	+-		++		·	
129.00 129.00 Stream #2 Added to: Stream #1 558.4 559.5 21.000	21.000	1				
129.00 129.00 Zero Out: Stream #2 7.9 0.0		129.00	Stream #2 Added to:	Stream =	#1 558	.4 559.5
16.333 ++ Notes: 1 = BASIN MODEL VOLUME EXCEEDED; 2 = TIME IS AT END OF 5-MINUTE UNIT INTERVAL 3 = RUNOFF ESTIMATES DO NOT EXTEND PAST 2 DAYS AFTER THE PEAK DAY OF THE DESIGN STORM +				Stream =	#2 7	.9 0.0
Notes: 1 = BASIN MODEL VOLUME EXCEEDED; 2 = TIME IS AT END OF 5-MINUTE UNIT INTERVAL 3 = RUNOFF ESTIMATES DO NOT EXTEND PAST 2 DAYS AFTER THE PEAK DAY OF THE DESIGN STORM +						
	Notes: 1 = INTERVAL 3 = THE DESIGN ST	BASIN MODEI RUNOFF EST	VOLUME EXCEEDED; 2 =	TIME IS	AT END OF	5-MINUTE UNIT

```
* AES FLOODSCx PROGRAM RESULTS SUMMARY *
|INPUT FILENAME: [EV02137F.DAT ]
Page: 2 of
|UPSTREAM DOWNSTREAM|
                                  | UPSTREAM DOWNSTREAM|
TIME(2) TO | MAX. STORAGE|
| NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) | PEAK (CFS) |
PEAK (HR) | MODELED (AF) | FOOTNOTES |
| 129.00 | 129.00| Stream #2 Added to: Stream #1|
                                      559.5 563.1
         21.000 I
| 129.00 | 129.00| Zero Out:
                          Stream #2|
                                     25.9
                                             0.01
| 129.00 | 133.00| Convex Routing: | Stream #1|
                                      563.1 562.91
          21.167
| 13010.00
         132.00| Subarea (UH) Added to Stream #2|
                                     0.0 137.3|
17.333 |
         | 132.00 | 13305.00| Convex Routing:
                                     137.3
                           Stream #2|
                                              136.0|
17.917 I
         I 13305.00
         133.00 | Convex Routing: Stream #2|
                                      136.0
                                             135.41
         18.250 |
| 132.00 | 133.00| Subarea (UH) Added to Stream #3|
                                     0.0
                                             73.41
17.000 I
          | 133.00
         133.00| Stream #3 Added to: Stream #2|
                                     135.4 198.5
17.167 |
          133.00| Zero Out: Stream #3|
133.00
                                             0.01
| 133.00 | 133.00| Stream #2 Added to: Stream #1|
                                      562.9
                                              731.21
| 133.00 | 133.00| Zero Out:
                      Stream #2|
                                      198.5
                                             0.01
| 133.00 | 134.00| Convex Routing: | Stream #1|
                                      731.2
                                            730.4|
          17.833 I
| 133.00
         134.00| Subarea (UH) Added to Stream #2|
                                     0.0
                                             63.21
16.417 |
         730.4
134.00
          134.00| Stream #2 Added to: Stream #1|
                                              771.91
17.250 I
          | 134.00 | 134.00| Zero Out:
                           Stream #2|
                                               0.01
50.21
18.000 I
         | 134.00 | 134.00 | Stream #2 Added to: Stream #1 | 771.9 | 818.0 |
          17.250 I
| 134.00 | 134.00 | Zero Out: | Stream #2|
                                       50.2
                                             0.01
| 134.00 | 137.00 | Convex Routing: | Stream #1|
                                      818.0
                                              816.0|
17.500
      Date: 06/13/2019 File name: EV02137F.RES Page 18
```

16.583	137.00 Subarea	Ì			
			+		+-
137.00	137.00 Stream		Stream #1	816.0	854.3
17.417 137.00	 137.00 Zero Ou	ıt:	Stream #2	49.3	0.0
137.00			Stream #1		854.3
	954.48 3				
•			Τ		-
	BASIN MODEL VOLUME		= TIME IS AT E	ND OF 5-MINU	TE UNIT
3 = F THE DESIGN STO	RUNOFF ESTIMATES D DRM	OO NOT EXTEND I	PAST 2 DAYS AF	TER THE PEAK	DAY OF
+					

END OF FLOODSCx ROUTING ANALYSIS

F L O O D R O U T I N G A N A L Y S I S USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)

(c) Copyright 1989-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1264

Analysis prepared by:

Michael Baker International 5 Hutton Centre Drive Suite 500 Santa Ana, CA 92707

* ULTIMATE CONDITION - REGIONAL NODE 138

* 2-YR EV JUNE 2019 ROKAMOTO

FILE NAME: EV02138F.DAT

TIME/DATE OF STUDY: 07:04 06/12/2019

** INPUT SUMMARY **

FLOW PROCESS FROM NODE 10100.00 TO NODE 119.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<

WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE

*USER ENTERED "LAG" TIME = 5.382 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED

MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.595; LOW LOSS FRACTION = 0.931

SPECIFIED PEAK RAINFALL DEPTHS (INCH):

5-MINUTE = 0.17; 30-MINUTE = 0.31; 1-HOUR = 0.42

3-HOUR = 0.79; 6-HOUR = 1.18; 24-HOUR = 2.09

*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392

3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932

FLOW PROCESS FROM NODE 119.00 TO NODE 12603.00 IS CODE = 5.2

123.00 10 1002 12 0022 012

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<

77777760EL CHIMAEL MOOTING OF STREET IN CONVERT METHOD CONVERT

THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology,

Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).

ASSUMED REGULAR CHANNEL INFORMATION:

Date: 06/13/2019

BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00

UPSTREAM ELEVATION(FT) = 341.63; DOWNSTREAM ELEVATION(FT) = 312.40

File name: EV02138F.RES Page 1

CHANNEL LENGTH (FT) = 3157.79 MANNING'S FACTOR = 0.030CONSTANT LOSS RATE(CFS) = 0.00 _____ FLOW PROCESS FROM NODE 810.00 TO NODE 12603.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<< ______ WATERSHED AREA = 171.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 0.141 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.348; LOW LOSS FRACTION = 0.638 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38 3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392 3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932 ************************* FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 7 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1 -----FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 6 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<> ______ FLOW PROCESS FROM NODE 12603.00 TO NODE 126.00 IS CODE = 5.2 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>> _____ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00UPSTREAM ELEVATION(FT) = 312.40; DOWNSTREAM ELEVATION(FT) = 286.00 CHANNEL LENGTH(FT) = 3046.70 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00 ************************ FLOW PROCESS FROM NODE 920.00 TO NODE 126.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<

```
______
 WATERSHED AREA = 553.800 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.292 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.509; LOW LOSS FRACTION = 0.862
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
______
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 600.00 TO NODE 126.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 185.300 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.323 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.587; LOW LOSS FRACTION = 0.979
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 12720.50 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 286.00; DOWNSTREAM ELEVATION(FT) =
 CHANNEL LENGTH (FT) = 4077.05 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 430.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 315.200 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.299 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.292; LOW LOSS FRACTION = 0.536
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 413.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
_____
 WATERSHED AREA = 124.300 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.203 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.276; LOW LOSS FRACTION = 0.517
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
```

Date: 06/13/2019 File name: EV02138F.RES Page 3 Date: 06/13/2019 File name: EV02138F.RES Page 4

```
*************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
_____
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
______
************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12741.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 258.00; DOWNSTREAM ELEVATION(FT) = 247.00
 CHANNEL LENGTH (FT) = 2294.66 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 320.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 675.500 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.380 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.251; LOW LOSS FRACTION = 0.478
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
************************
```

Date: 06/13/2019

```
>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #4<
______
 WATERSHED AREA = 195.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.556 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.486; LOW LOSS FRACTION = 0.820
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
***********************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
 >>>>STREAM NUMBER 4 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
 >>>>STREAM NUMBER 4 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 127.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 247.00; DOWNSTREAM ELEVATION(FT) =
                                            240.00
 CHANNEL LENGTH(FT) = 819.00 MANNING'S FACTOR = 0.030
```

FLOW PROCESS FROM NODE 390.00 TO NODE 12741.00 IS CODE = 1

File name: EV02138F.RES Page 5 Date: 06/13/2019 File name: EV02138F.RES Page 6

```
CONSTANT LOSS RATE (CFS) = 0.00
*****************
 FLOW PROCESS FROM NODE 12710.00 TO NODE 127.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 944.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.541 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.592; LOW LOSS FRACTION = 0.985
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 240.00; DOWNSTREAM ELEVATION(FT) =
                                               215.00
 CHANNEL LENGTH (FT) = 3242.32
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
FLOW PROCESS FROM NODE 50220.00 TO NODE 50347.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<
```

File name: EV02138F.RES

Page 7

Date: 06/13/2019

```
WATERSHED AREA = 1120.700 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.427 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.434; LOW LOSS FRACTION = 0.737
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
FLOW PROCESS FROM NODE 50347.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 313.00; DOWNSTREAM ELEVATION(FT) =
                                                215.00
 CHANNEL LENGTH (FT) = 2700.00
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 129.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 215.00; DOWNSTREAM ELEVATION(FT) =
                                                213.00
 CHANNEL LENGTH(FT) = 1663.10 MANNING'S FACTOR = 0.030
```

```
CONSTANT LOSS RATE (CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 50400.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 420.000 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.256 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.553; LOW LOSS FRACTION = 0.923
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 214.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.274 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.253; LOW LOSS FRACTION = 0.494
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 213.00; DOWNSTREAM ELEVATION(FT) =
                                                     212.00
 CHANNEL LENGTH (FT) = 1389.52 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 13010.00 TO NODE 132.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 4924.400 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 1.262 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.487; LOW LOSS FRACTION = 0.830
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 13305.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 427.51; DOWNSTREAM ELEVATION(FT) =
                                                     315.00
 CHANNEL LENGTH (FT) = 9760.05
                           MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE (CFS) = 0.00
```

File name: EV02138F.RES

Page 10

Date: 06/13/2019

```
______
*******************
 FLOW PROCESS FROM NODE 13305.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <<->
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 315.00; DOWNSTREAM ELEVATION(FT) =
                                             212.00
 CHANNEL LENGTH (FT) = 6877.24 MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE(CFS) = 0.00
_____
****************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
______
 WATERSHED AREA = 1715.900 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.947 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.449; LOW LOSS FRACTION = 0.750
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
***********************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
_____
FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
*************************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<->
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 212.00; DOWNSTREAM ELEVATION(FT) = 173.00
 CHANNEL LENGTH (FT) = 6461.31 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 1691.600 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.391 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.487; LOW LOSS FRACTION = 0.818
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
*************************
```

Date: 06/13/2019 File name: EV02138F.RES Page 11 Date: 06/13/2019 File name: EV02138F.RES Page 12

```
FLOW PROCESS FROM NODE 13500.00 TO NODE 134.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 3859.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 2.983 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.567; LOW LOSS FRACTION = 0.908
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
***********************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 137.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 173.00; DOWNSTREAM ELEVATION(FT) = 133.00
 CHANNEL LENGTH (FT) = 6064.09
                         MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
_____
FLOW PROCESS FROM NODE 134.00 TO NODE 137.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 1191.900 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.533 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.474; LOW LOSS FRACTION = 0.781
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
      Date: 06/13/2019
                  File name: EV02138F.RES
```

```
3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 138.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 133.00; DOWNSTREAM ELEVATION(FT) =
                                                119.70
 CHANNEL LENGTH(FT) = 4643.67 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
______
*******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 138.00 IS CODE = 1
______
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 1303.500 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.923 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.534; LOW LOSS FRACTION = 0.861
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 138.00 TO NODE 138.00 IS CODE = 7
```

5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38

>>>>STREAM	NUMBER 2 ADDE	ED TO STREAM NUMBE	R 1<<<<	

		ARED AND SET TO ZE		o
////SIREAM	NUMBER 2 CLEA			=======
****************			****	
			138.00 IS CODE = 1	
>>>>VIEW S1	FREAM NUMBER 1	HYDROGRAPH<		

```
* AES FLOODSCx PROGRAM RESULTS SUMMARY *
|INPUT FILENAME: [EV02138F.DAT ]
Page: 1 of
|UPSTREAM DOWNSTREAM|
                                    | UPSTREAM DOWNSTREAM|
TIME(2) TO | MAX. STORAGE|
| NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) | PEAK (CFS) |
PEAK (HR) | MODELED (AF) | FOOTNOTES |
20.417 |
         | 119.00 | 12603.00| Convex Routing: Stream #1| 518.5 | 517.4|
20.500 |
| 810.00 | 12603.00| Subarea (UH) Added to Stream #2|
                                             17.21
16.167 |
         | 12603.00 | 12603.00| Stream #2 Added to: Stream #1|
                                        517.4
                                                519.5|
| 12603.00 | 12603.00| Zero Out:
                                                0.0|
                             Stream #2|
                                       17.2
| 12603.00 | 126.00| Convex Routing: | Stream #1|
                                        519.5
                                                518.71
20.583 |
| 920.00 | 126.00| Subarea (UH) Added to Stream #2|
                                        0.0
                                               17.1
16.333 I
          1
| 126.00 | 126.00| Stream #2 Added to: Stream #1|
                                        518.7
                                                521.4|
20.583 |
          126.00| Zero Out: Stream #2|
1 126.00
                                       17.1
                                               0.01
| 600.00 | 126.00| Subarea (UH) Added to Stream #2|
                                                 0.81
16.417 |
| 126.00 | 126.00| Stream #2 Added to: Stream #1|
                                        521.4
                                                521.5|
20.583 |
         1
| 126.00 | 126.00| Zero Out:
                            Stream #2|
                                        0.8
                                                0.0
               | 126.00 12720.50| Convex Routing: Stream #1|
                                        521.5
                                                520.91
         | 430.00 12720.50| Subarea (UH) Added to Stream #2|
                                                 32.41
16.333 I
                                                 15.5|
413.00 12720.50| Subarea (UH) Added to Stream #3|
16.250 I
| 12720.50 | 12720.50| Stream #3 Added to: Stream #2|
                                                 46.31
         I I
16.333 |
| 12720.50 | 12720.50 | Zero Out: | Stream #3|
                                       15.5
                                                0.01
| 12720.50 | 12720.50| Stream #2 Added to: Stream #1|
                                        520.9
                                                527.91
20.750
| 12720.50 | 12720.50 | Zero Out: | Stream #2|
                                       46.3
                                                0.0
Date: 06/13/2019 File name: EV02138F.RES
                                         Page 16
```

.00 Suba .00 Suba .00 Strong .00 Strong .00 Strong .00 Cong .00 Suba .00 Strong .00 Suba .00 Suba .00 Suba .00 Suba .00 Cong .00 Cong .00 Cong .00 Cong .00 Suba .00 Suba	vex Routing area (UH) A eam #2 Adde o Out: vex Routing area (UH) A	dded to dded to: d to: .: dded to d to:	Stream	#2 #4 #2 #4 #1 #2 #1 #2 #1	0.0 0.0 71.6 6.4 527.8 77.5 541.0 0.0 540.9 2.6	71.6 6.4 77.5 0.0 541.0 + 0.0 540.9 2.6 541.4 0.0
.00 Strong .00 Zerong .00 Strong .00 Zerong .00 Subsidiary .00 Zerong .00 Zerong .00 Zerong .00 Zerong .00 Zerong .00 Cong .00 Subsidiary	eam #4 Adder o Out: eam #2 Adder o Out: vex Routing area (UH) Ar eam #2 Adder o Out: vex Routing area (UH) Ar eam #2 Adder o Out: vex Routing	d to: d to: dded to d to:	Stream Stream Stream Stream Stream Stream Stream Stream	#2 #4 #1 #2 #1 #2 #1 #2	71.6 6.4 527.8 77.5 541.0 0.0 540.9 2.6	77.5 0.0 541.0 + 0.0 540.9 2.6 541.4 0.0
.00 Stro	eam #4 Adder o Out: eam #2 Adder o Out: vex Routing area (UH) Ar o Out: o Out: vex Routing area (UH) Ar o Out: o Out:	d to: : dded to d to:	Stream Stream Stream Stream Stream Stream Stream	#4 #1 #2 #1 #2 #1 #2	6.4 527.8 77.5 541.0 0.0 540.9 2.6	0.0 541.0 + 0.0 540.9 2.6 541.4 0.0
.00 Stro	eam #2 Added o Out: vex Routing area (UH) Added eam #2 Added o Out: vex Routing area (UH) Added area (UH) Added by Added area (UH) Added area (UH) Added	d to: : dded to d to:	Stream Stream Stream Stream Stream Stream	#1 #2 #1 #2 #1 #2 #2	527.8 	541.0 + 0.0 540.9 2.6 541.4 0.0
.00 Stro	eam #2 Added o Out: vex Routing area (UH) Added eam #2 Added o Out: vex Routing area (UH) Added area (UH) Added by Added area (UH) Added area (UH) Added	d to: : dded to d to:	Stream Stream Stream Stream Stream Stream	#1 #2 #1 #2 #1 #2 #2	527.8 	541.0 + 0.0 540.9 2.6 541.4 0.0
.00 Zero	vex Routing area (UH) Aceam #2 Addeceam #2 Out: o Out: vex Routing area (UH) Aceam #2 Addeceam #2 Ad	: dded to d to:	Stream Stream Stream Stream	#2 #1 #2 #1 #2	77.5 541.0 0.0 540.9 2.6	0.0 540.9 2.6 541.4 0.0
.00 Con .00 Sub.	vex Routing area (UH) Ace eam #2 Addece o Out: vex Routing area (UH) Ace	: dded to d to:	Stream Stream Stream	#1 #2 #1 #2	541.0 0.0 540.9 2.6	540.9 2.6 541.4 0.0
 .00 Subs	area (UH) Adem #2 Addem o Out:	dded to	Stream Stream Stream	#2 #1 #2	0.0 540.9 2.6	2.6 541.4 0.0
.00 Stro	eam #2 Added	d to:	Stream Stream	#1 #2 +-	540.9	541.4
.00 Stro	o Out:+ vex Routing area (UH) A		Stream	#2 +-	2.6	0.01
.00 Zero	vex Routing			+		+
.00 Con	vex Routing area (UH) A		Stream	#1	- /	
.00 Sub	area (UH) A			11 ± 1	541.4	541.3
1		dded to	Stream	#2	0.0	57.7
.00 Con	vex Routing	:	Stream	#2	57.7	57.2
.00 Str	eam #2 Adde	d to:	Stream	#1	541.3	551.4
+	+					
Sub	area (UH) A	aaea to	Stream	#2	0.0	7.6
	[
.00 Zer	o Out:		Stream	#2	7.6	0.0
1	1					
MODEL VO	LUME EXCEED:	ED; 2 = XTEND P	TIME IS	S AT 1	END OF 5-MI: FTER THE PE.	NUTE UNIT
				Convex Routing: Stream Convex Routing: Str		.00 Convex Routing: Stream #1 551.4

I			FLOODSC	x PRO	OGRAM RESU	LTS SUMMARY
INPUT FILEN age: 2 of +	1	.38F.DAT]		+		
		++				DOWNSTREAM
NODE #	NODE #	GE HYDROLOGIC/HYDRAULIC F) FOOTNOTES				
+-		+ Stream #2 Added to:				
1.000	129.001	Zero Out:	Stream	#1	25.0	0.0
		Convex Routing:				
1.083		 Subarea (UH) Added to				
7.333 132.00 7.917	13305.00	Convex Routing:	Stream	#2	134.2	132.8
	133.00	++ Convex Routing:				
	133.00	Subarea (UH) Added to	Stream	#3	0.0	71.6
	133.00	Stream #3 Added to:	Stream	#2	132.3	194.2
	133.00	Zero Out:	Stream	#3	71.6	0.0
7.583	1	Stream #2 Added to:				
		Zero Out:	Stream	#2	194.2	0.0
7 833	1	Convex Routing:				
133.00	134.00	Subarea (UH) Added to	Stream	#2	0.0	61.7
	134.00	Stream #2 Added to:	Stream	#1	719.3	757.7
						0.0
13500.00		++ Subarea (UH) Added to	Stream	#2	0.0	49.4
		Stream #2 Added to:	Stream	#1	757.7	803.2
7.250 134.00	134.00	Zero Out:	Stream	#2	49.4	0.0
1 134 00	137.00	Convex Routing:	Stream	#1	803.2	801.2

1	1					
				'		
137.00	•		Stream	#1	801.2	839.1
	Zero Out:		Stream	#2	48.0	0.0
138.00	Convex Routin	ıg:	Stream	#1	839.1	836.6
	Subarea (UH)	Added to	Stream	#2	0.0	30.3
,	Stream #2 Add	led to:	Stream	#1	836.6	863.6
1	ı					
138.00	Zero Out:		Stream	#2	30.3	0.0
138.00	View:		Stream	#1		863.6
				+		+-
	•		TIME IS	AT END	OF 5-MINUTE	UNIT
RM		1	AST 2 DA	AYS AFTE	R THE PEAK D	AY OF
	137.00 137.00 137.00 138.00 138.00 138.00 138.00 4 138.00 138.00 962.92 ASIN MODEI		137.00 Stream #2 Added to: 137.00 Zero Out: 138.00 Convex Routing: 138.00 Subarea (UH) Added to: 138.00 Stream #2 Added to: 138.00 Stream #2 Added to: 138.00 Stream #2 Added to: 138.00 View: 962.92 3			137.00 Stream #2 Added to: Stream #1 801.2 137.00 Zero Out: Stream #2 48.0 138.00 Convex Routing: Stream #1 839.1 138.00 Subarea (UH) Added to Stream #2 0.0 138.00 Stream #2 Added to: Stream #1 836.6 1

END OF FLOODSCx ROUTING ANALYSIS

----+

FLOOD ROUTING ANALYSIS USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)

(c) Copyright 1989-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1264

Analysis prepared by:

Michael Baker International 5 Hutton Centre Drive Suite 500 Santa Ana, CA 92707

********************** DESCRIPTION OF STUDY ***************** * RANCHO MISSION VIEJO - CALIBRATED FREE DRAINING UH

* ULTIMATE CONDITION - REGIONAL NODE 139

* 2-YR EV JUNE 2019 ROKAMOTO

FILE NAME: EV02139F.DAT

TIME/DATE OF STUDY: 07:03 06/12/2019

** INPUT SUMMARY **

FLOW PROCESS FROM NODE 10100.00 TO NODE 119.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<

WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 5.382 HOURS

VALLEY (DEVELOPED) S-GRAPH SELECTED

MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.595; LOW LOSS FRACTION = 0.931 SPECIFIED PEAK RAINFALL DEPTHS (INCH):

5-MINUTE = 0.17; 30-MINUTE = 0.31; 1-HOUR = 0.42

3-HOUR = 0.79; 6-HOUR = 1.18; 24-HOUR = 2.09

*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391

3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932

FLOW PROCESS FROM NODE 119.00 TO NODE 12603.00 IS CODE = 5.2

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<

THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).

ASSUMED REGULAR CHANNEL INFORMATION:

Date: 06/13/2019

BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00

UPSTREAM ELEVATION(FT) = 341.63; DOWNSTREAM ELEVATION(FT) = 312.40

File name: EV02139F.RES

Page 1

CHANNEL LENGTH (FT) = 3157.79 MANNING'S FACTOR = 0.030CONSTANT LOSS RATE(CFS) = 0.00 _____ FLOW PROCESS FROM NODE 810.00 TO NODE 12603.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<< ______ WATERSHED AREA = 171.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 0.141 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.348; LOW LOSS FRACTION = 0.638 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38 3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391 3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932************************* FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 7 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1 -----FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 6 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<> ______ FLOW PROCESS FROM NODE 12603.00 TO NODE 126.00 IS CODE = 5.2 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>> _____ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00UPSTREAM ELEVATION(FT) = 312.40; DOWNSTREAM ELEVATION(FT) = 286.00 CHANNEL LENGTH(FT) = 3046.70 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00 ************************ FLOW PROCESS FROM NODE 920.00 TO NODE 126.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<

```
______
 WATERSHED AREA = 553.800 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.292 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.509; LOW LOSS FRACTION = 0.862
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
______
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 600.00 TO NODE 126.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 185.300 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.323 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.587; LOW LOSS FRACTION = 0.979
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 12720.50 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 286.00; DOWNSTREAM ELEVATION(FT) =
 CHANNEL LENGTH (FT) = 4077.05 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 430.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 315.200 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.299 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.292; LOW LOSS FRACTION = 0.536
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 413.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
_____
 WATERSHED AREA = 124.300 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.203 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.276; LOW LOSS FRACTION = 0.517
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
```

Date: 06/13/2019 File name: EV02139F.RES Page 3 Date: 06/13/2019 File name: EV02139F.RES Page 4

```
*************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
_____
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
______
************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12741.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 258.00; DOWNSTREAM ELEVATION(FT) = 247.00
 CHANNEL LENGTH (FT) = 2294.66 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 320.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 675.500 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.380 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.251; LOW LOSS FRACTION = 0.478
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
**********************
```

File name: EV02139F.RES

Date: 06/13/2019

```
>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #4<
______
 WATERSHED AREA = 195.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.556 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.486; LOW LOSS FRACTION = 0.820
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
***********************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
 >>>>STREAM NUMBER 4 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
 >>>>STREAM NUMBER 4 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 127.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 247.00; DOWNSTREAM ELEVATION(FT) =
                                            240.00
 CHANNEL LENGTH(FT) = 819.00 MANNING'S FACTOR = 0.030
```

FLOW PROCESS FROM NODE 390.00 TO NODE 12741.00 IS CODE = 1

```
CONSTANT LOSS RATE (CFS) = 0.00
FLOW PROCESS FROM NODE 12710.00 TO NODE 127.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 944.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.541 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.592; LOW LOSS FRACTION = 0.985
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 240.00; DOWNSTREAM ELEVATION(FT) =
                                               215.00
 CHANNEL LENGTH (FT) = 3242.32
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
FLOW PROCESS FROM NODE 50220.00 TO NODE 50347.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<
```

File name: EV02139F.RES

Page 7

Date: 06/13/2019

```
WATERSHED AREA = 1120.700 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.427 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.434; LOW LOSS FRACTION = 0.737
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
FLOW PROCESS FROM NODE 50347.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 313.00; DOWNSTREAM ELEVATION(FT) =
                                                215.00
 CHANNEL LENGTH (FT) = 2700.00
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 129.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 215.00; DOWNSTREAM ELEVATION(FT) =
                                                213.00
 CHANNEL LENGTH(FT) = 1663.10 MANNING'S FACTOR = 0.030
```

```
CONSTANT LOSS RATE (CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 50400.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 420.000 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.256 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.553; LOW LOSS FRACTION = 0.923
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 214.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.274 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.253; LOW LOSS FRACTION = 0.494
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 213.00; DOWNSTREAM ELEVATION(FT) =
                                                     212.00
 CHANNEL LENGTH (FT) = 1389.52 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 13010.00 TO NODE 132.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 4924.400 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 1.262 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.487; LOW LOSS FRACTION = 0.830
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 13305.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 427.51; DOWNSTREAM ELEVATION(FT) =
                                                     315.00
 CHANNEL LENGTH (FT) = 9760.05
                           MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE (CFS) = 0.00
```

File name: EV02139F.RES

Page 10

Date: 06/13/2019

```
______
******************
 FLOW PROCESS FROM NODE 13305.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <<->
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 315.00; DOWNSTREAM ELEVATION(FT) =
                                             212.00
 CHANNEL LENGTH (FT) = 6877.24 MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE(CFS) = 0.00
_____
****************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
______
 WATERSHED AREA = 1715.900 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.947 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.449; LOW LOSS FRACTION = 0.750
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
***********************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
_____
FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
*************************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<->
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 212.00; DOWNSTREAM ELEVATION(FT) = 173.00
 CHANNEL LENGTH (FT) = 6461.31 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 1691.600 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.391 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.487; LOW LOSS FRACTION = 0.818
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
*************************
```

Date: 06/13/2019 File name: EV02139F.RES Page 11 Date: 06/13/2019 File name: EV02139F.RES Page 12

```
FLOW PROCESS FROM NODE 13500.00 TO NODE 134.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 3859.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 2.983 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.567; LOW LOSS FRACTION = 0.908
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
********************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 137.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 173.00; DOWNSTREAM ELEVATION(FT) = 133.00
 CHANNEL LENGTH (FT) = 6064.09
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
FLOW PROCESS FROM NODE 134.00 TO NODE 137.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 1191.900 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.533 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.474; LOW LOSS FRACTION = 0.781
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
```

```
3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 138.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 133.00; DOWNSTREAM ELEVATION(FT) =
                                                119.70
 CHANNEL LENGTH(FT) = 4643.67 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
______
*******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 138.00 IS CODE = 1
______
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 1303.500 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.923 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.534; LOW LOSS FRACTION = 0.861
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38
  3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
******************
 FLOW PROCESS FROM NODE 138.00 TO NODE 138.00 IS CODE = 7
```

5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38

Date: 06/13/2019 File name: EV02139F.RES Page 13 Date: 06/13/2019 File name: EV02139F.RES Page 14

>>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<

>>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD
THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH(FT) = 0.01 CHANNEL Z = 3.00 UPSTREAM ELEVATION(FT) = 119.70; DOWNSTREAM ELEVATION(FT) = 100.00 CHANNEL LENGTH(FT) = 3107.78 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00

WATERSHED AREA = 428.000 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE *USER ENTERED "LAG" TIME = 0.288 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE (INCH/HOUR) = 0.413; LOW LOSS FRACTION = 0.670 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.13; 30-MINUTE = 0.29; 1-HOUR = 0.38 3-HOUR = 0.64; 6-HOUR = 0.88; 24-HOUR = 1.48 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391 3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932

>>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<

Date: 06/13/2019 File name: EV02139F.RES

Page 15

			-====
*******	******	********	*****
FLOW PROCESS FROM NODE	139.00 TO NODE	139.00 IS CODE = 11	
>>>>VIEW STREAM NUMBER 1	HYDROGRAPH<		
=======================================			-====
_======================================			

 		+ * AES	FLOODSO	Cx E	ROGRAM RESU	LTS SUMMARY
INPUT FILEN	1	39F.DAT]				
+- UPSTREAM I	OOWNSTREAM	++				DOWNSTREAM
NODE #	NODE #	HYDROLOGIC/HYDRAULIC F) FOOTNOTES				
	119.00	++ Subarea (UH) Added to	Stream	#1	0.0	518.3
119.00	12603.00	Convex Routing:	Stream	#1	518.3	517.1
810.00	12603.00	Subarea (UH) Added to	Stream	#2	0.0	17.2
12603.00	12603.00	Stream #2 Added to:	Stream	#1	517.1	519.2
		Zero Out:				
+- 12603.00	126.00	++ Convex Routing:				
2 3 3 3 I	126.00	Subarea (UH) Added to				
126.00	126.00	Stream #2 Added to:	Stream	#1	518.5	521.2
126.00	126.00	Zero Out:	Stream	#2	17.1	0.0
6.417 I	1	Subarea (UH) Added to				
+-		+ Stream #2 Added to:				
).583 126.00	126.00	Zero Out:	Stream	#2	0.8	0.0
		 Convex Routing:				
).750 430.00	12720.50	Subarea (UH) Added to	Stream	#2	0.0	32.3
6.250 413.00	12720.50	Subarea (UH) Added to	Stream	#3	0.0	15.5
+		 ++		+		
		Stream #3 Added to:	Stream	#2	32.3	46.2
12720.50		Zero Out:	Stream	#3	15.5	0.0
0 0 0	12720.50	Stream #2 Added to:	Stream	#1	520.7	527.7
12720.50	12720.50		Stream	#2	46.2	0.0

		Convex Routing:				
+-		++ Subarea (UH) Added to				
16.417 390.00	12741.00	 Subarea (UH) Added to	Stream	#4	0.0	6.3
16.583 12741.00	12741.00	Stream #4 Added to:	Stream	#2	71.5	77.3
16.417 12741.00	12741.00	Zero Out:	Stream	#4	6.3	0.0
		Stream #2 Added to:				540.8
		++			77.3	
12741.00	127.00	Convex Routing:	Stream	#1	540.8	540.7
	127.00	Subarea (UH) Added to				
10.363 127.00 20.833	127.00	Stream #2 Added to:	Stream	#1	540.7	541.2
127.00	127.00	Zero Out:				
		++ Convex Routing:				
	50347.00	Subarea (UH) Added to	Stream	#2	0.0	57.6
50347.00	12902.00	Convex Routing:	Stream	#2	57.6	57.1
12902.00 20.917		Stream #2 Added to:	Stream	#1	541.0	551.2
12902.00 	12902.00	Zero Out:				
·		++ Convex Routing:	Stream	#1 I	551 2	551 01
21.000	1	Subarea (UH) Added to				
16.333	1	Stream #2 Added to:				
21.000	129.00		Stream		7.6	0.0
16 222 1		 Subarea (UH) Added to 	Stream	#2	0.0	25.0
Notes: 1 = INTERVAL	BASIN MODEI	VOLUME EXCEEDED; 2 =	TIME IS	S AT E		TE UNIT
		File name: EV02139F.			Page 1	

```
* AES FLOODSCx PROGRAM RESULTS SUMMARY *
|INPUT FILENAME: [EV02139F.DAT ]
Page: 2 of |
|UPSTREAM DOWNSTREAM|
                                   | UPSTREAM DOWNSTREAM|
TIME(2) TO | MAX. STORAGE|
| NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) | PEAK (CFS) |
PEAK (HR) | MODELED (AF) | FOOTNOTES |
| 129.00 | 129.00| Stream #2 Added to: Stream #1|
                                       552.1 555.71
         21.000 |
| 129.00 | 129.00| Zero Out:
                           Stream #2|
                                     25.0
                                              0.01
| 129.00 | 133.00| Convex Routing: | Stream #1|
                                       555.7 555.51
          21.083 |
| 13010.00
         132.00| Subarea (UH) Added to Stream #2|
                                     0.0
                                           134.0|
17.333 |
         | 132.00 | 13305.00| Convex Routing:
                                              132.6|
                            Stream #2|
                                     134.0
17.917 I
         I 13305.00
         133.00 | Convex Routing: Stream #2|
                                       132.6
                                              132.11
         18.250 |
| 132.00 | 133.00| Subarea (UH) Added to Stream #3|
                                       0.0
                                              78.71
17.000 I
          | 133.00
         133.00| Stream #3 Added to: Stream #2|
                                      132.1
                                              201.41
17.167 |
          1
        133.00| Zero Out: Stream #3|
133.00
                                              0.01
| 133.00 | 133.00| Stream #2 Added to: Stream #1|
                                       555.5
                                              722.71
| 133.00 | 133.00| Zero Out:
                       Stream #2|
                                       201.4
                                              0.01
| 133.00 | 134.00| Convex Routing: | Stream #1|
                                      722.7
                                             721.8|
          17.833 |
| 133.00
         134.00| Subarea (UH) Added to Stream #2|
                                      0.0
                                             61.51
16.417 |
          134.00
          134.00| Stream #2 Added to: Stream #1|
                                              762.91
17.250 I
          | 134.00 | 134.00| Zero Out:
                            Stream #2|
                                               0.01
49.31
18.000 I
         | 134.00 | 134.00| Stream #2 Added to: Stream #1| 762.9
                                              808.41
          17.250 I
| 134.00 | 134.00 | Zero Out: | Stream #2|
                                       49.3
                                              0.01
| 134.00 | 137.00 | Convex Routing: | Stream #1|
                                       808.4
                                              806.5|
17.500
      Date: 06/13/2019 File name: EV02139F.RES
                                       Page 20
```

16.583	1	Subarea (UH) Adde				
		++				
		Stream #2 Added t	o: Stream	#1	806.5	843.9
17.417 137.00	137.00	Zero Out:	Stream	#2	47.9	0.0
137.00 17.750		Convex Routing:	Stream	#1	843.9	841.5
		Subarea (UH) Adde	d to Stream	#2	0.0	30.2
138.00	138.00	Stream #2 Added t				
+				+		+-
'		Zero Out:	Stream	#2	30.2	0.0
138.00	139.00	Convex Routing:	Stream	#1	868.4	867.8
		Subarea (UH) Adde	d to Stream	#2	0.0	31.8
139.00 17.833	139.00	Stream #2 Added t	o: Stream	#1	867.8	882.5
139.00		Zero Out:				
		 ++		+		+-
139.00 17.833	139.00 979.44	View:				
		 ++		+		+-
Notes: 1 = I	BASIN MODEI	VOLUME EXCEEDED;				
3 = 1 THE DESIGN ST	ORM	MATES DO NOT EXTE	ND PAST 2 DA	AYS AFTER	R THE PEAK DA	AY OF
'		+				

END OF FLOODSCx ROUTING ANALYSIS

F L O O D R O U T I N G A N A L Y S I S USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)

(c) Copyright 1989-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1264

Analysis prepared by:

Michael Baker International 5 Hutton Centre Drive Suite 500 Santa Ana, CA 92707

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<

WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
*USER ENTERED "LAG" TIME = 3.308 HOURS

VALLEY (DEVELOPED) S-GRAPH SELECTED

MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.496; LOW LOSS FRACTION = 0.845 SPECIFIED PEAK RAINFALL DEPTHS(INCH):

5-MINUTE = 0.23; 30-MINUTE = 0.45; 1-HOUR = 0.63

3-HOUR = 1.17; 6-HOUR = 1.74; 24-HOUR = 3.08

*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425 3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941

3 Hook 0.7757 0 Hook 0.0337 21 Hook 0.311

FLOW PROCESS FROM NODE 119.00 TO NODE 12603.00 IS CODE = 5.2

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>

THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).

ASSUMED REGULAR CHANNEL INFORMATION:

Date: 06/13/2019

BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00

UPSTREAM ELEVATION(FT) = 341.63; DOWNSTREAM ELEVATION(FT) = 312.40

File name: EV05127F.RES

Page 1

CHANNEL LENGTH (FT) = 3157.79 MANNING'S FACTOR = 0.030CONSTANT LOSS RATE(CFS) = 0.00 _____ FLOW PROCESS FROM NODE 810.00 TO NODE 12603.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<< ______ WATERSHED AREA = 171.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 0.134 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.290; LOW LOSS FRACTION = 0.598 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.18; 30-MINUTE = 0.42; 1-HOUR = 0.56 3-HOUR = 0.94; 6-HOUR = 1.30; 24-HOUR = 2.16*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425 3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941 ************************* FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 7 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1 -----FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 6 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<> ______ FLOW PROCESS FROM NODE 12603.00 TO NODE 126.00 IS CODE = 5.2 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>> _____ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00UPSTREAM ELEVATION(FT) = 312.40; DOWNSTREAM ELEVATION(FT) = 286.00 CHANNEL LENGTH(FT) = 3046.70 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00 ************************ FLOW PROCESS FROM NODE 920.00 TO NODE 126.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<

```
______
 WATERSHED AREA = 553.800 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.253 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.424; LOW LOSS FRACTION = 0.818
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.18; 30-MINUTE = 0.42; 1-HOUR = 0.56
  3-HOUR = 0.94; 6-HOUR = 1.30; 24-HOUR = 2.16
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
______
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
*****************
 FLOW PROCESS FROM NODE 600.00 TO NODE 126.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 185.300 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.314 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.490; LOW LOSS FRACTION = 0.958
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.18; 30-MINUTE = 0.42; 1-HOUR = 0.56
  3-HOUR = 0.94; 6-HOUR = 1.30; 24-HOUR = 2.16
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 12720.50 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 286.00; DOWNSTREAM ELEVATION(FT) =
 CHANNEL LENGTH (FT) = 4077.05 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 430.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 315.200 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.271 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.243; LOW LOSS FRACTION = 0.472
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.18; 30-MINUTE = 0.42; 1-HOUR = 0.56
  3-HOUR = 0.94; 6-HOUR = 1.30; 24-HOUR = 2.16
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
*******************
 FLOW PROCESS FROM NODE 413.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
_____
 WATERSHED AREA = 124.300 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.187 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.230; LOW LOSS FRACTION = 0.459
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.18; 30-MINUTE = 0.42; 1-HOUR = 0.56
  3-HOUR = 0.94; 6-HOUR = 1.30; 24-HOUR = 2.16
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
```

Date: 06/13/2019 File name: EV05127F.RES Page 3 Date: 06/13/2019 File name: EV05127F.RES Page 4

```
*************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
_____
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
______
************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12741.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 258.00; DOWNSTREAM ELEVATION(FT) = 247.00
 CHANNEL LENGTH (FT) = 2294.66 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
*****************
 FLOW PROCESS FROM NODE 320.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 675.500 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.351 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.209; LOW LOSS FRACTION = 0.415
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.18; 30-MINUTE = 0.42; 1-HOUR = 0.56
  3-HOUR = 0.94; 6-HOUR = 1.30; 24-HOUR = 2.16
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
***********************
```

File name: EV05127F.RES

Page 5

Date: 06/13/2019

```
>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #4<
______
 WATERSHED AREA = 195.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.433 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.405; LOW LOSS FRACTION = 0.770
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.18; 30-MINUTE = 0.42; 1-HOUR = 0.56
  3-HOUR = 0.94; 6-HOUR = 1.30; 24-HOUR = 2.16
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
********************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
 >>>>STREAM NUMBER 4 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
 >>>>STREAM NUMBER 4 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 127.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.10 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 247.00; DOWNSTREAM ELEVATION(FT) =
                                            240.00
 CHANNEL LENGTH(FT) = 819.00 MANNING'S FACTOR = 0.030
```

FLOW PROCESS FROM NODE 390.00 TO NODE 12741.00 IS CODE = 1

```
CONSTANT LOSS RATE (CFS) = 0.00
******************
 FLOW PROCESS FROM NODE 12710.00 TO NODE 127.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 944.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.429 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.494; LOW LOSS FRACTION = 0.958
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.18; 30-MINUTE = 0.42; 1-HOUR = 0.56
  3-HOUR = 0.94; 6-HOUR = 1.30; 24-HOUR = 2.16
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 11
 >>>>VIEW STREAM NUMBER 1 HYDROGRAPH<
```

```
* AES FLOODSCx PROGRAM RESULTS SUMMARY *
|INPUT FILENAME: [EV05127F.DAT ]
Page: 1 of
|UPSTREAM DOWNSTREAM|
                                  | UPSTREAM DOWNSTREAM|
TIME(2) TO | MAX. STORAGE|
| NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) | PEAK (CFS) |
PEAK (HR) | MODELED (AF) | FOOTNOTES |
+------
| 10100.00 | 119.00| Subarea (UH) Added to Stream #1| 0.0 2417.5|
19.333 I
         | 119.00 12603.00| Convex Routing: Stream #1| 2417.5
                                             2389.21
19.417 I
| 810.00 | 12603.00| Subarea (UH) Added to Stream #2|
                                             40.6
16.167 |
        | 12603.00 | 12603.00 | Stream #2 Added to: Stream #1 | 2389.2
                                             2393.31
| 12603.00 | 12603.00| Zero Out:
                           Stream #2| 40.6
                                             0.01
| 12603.00 | 126.00| Convex Routing: | Stream #1| 2393.3
                                             2371.51
         19.500 |
920.00 126.00| Subarea (UH) Added to Stream #2| 0.0
                                             63.11
16.333 |
          | 126.00 | 126.00| Stream #2 Added to: Stream #1| 2371.5
                                             2377.71
          19.250 I
| 126.00 | 126.00| Zero Out: | Stream #2| 63.1
                                              0.01
| 600.00 | 126.00| Subarea (UH) Added to Stream #2| 0.0
                                             10.81
16.417 |
+-----
| 126.00 | 126.00| Stream #2 Added to: Stream #1| 2377.7
                                             2378.21
19.250 |
         1
| 126.00 | 126.00| Zero Out:
                           Stream #2| 10.8
                                             0.01
         | 126.00 | 12720.50 | Convex Routing: Stream #1 | 2378.2
                                             2376.31
19.583
| 430.00 12720.50| Subarea (UH) Added to Stream #2| 0.0
                                              69.51
16.333 I
| 413.00 12720.50| Subarea (UH) Added to Stream #3|
                                              33.21
16.250 I
        _______
| 12720.50 | 12720.50 | Stream #3 Added to: Stream #2 | 69.5
                                              97.31
16.250
| 12720.50 | 12720.50| Zero Out:
                          Stream #3| 33.2
                                             0.01
              | 12720.50 | 12720.50 | Stream #2 Added to: Stream #1 | 2376.3
                                             2390.01
19.583 |
        | 12720.50 | 12720.50 | Zero Out: | Stream #2 | 97.3
                                              0.0
Date: 06/13/2019 File name: EV05127F.RES
                                       Page 8
```

19.583	1	Convex Routing:				
		 ++		+		+-
		Subarea (UH) Added to	Stream	#2	0.0	145.2
390.00 16.500	12741.00	Subarea (UH) Added to	Stream	#4	0.0	18.9
12741.00 16.417	12741.00	Stream #4 Added to:	Stream	#2	145.2	162.9
12741.00		Zero Out:	Stream	#4	18.9	0.0
19.583	ı.	Stream #2 Added to:		•		
				+		+-
•		++ Zero Out:	Stream	#2	162.9	0.0
12741.00	127.00	Convex Routing:	Stream	#1	2413.5	2413.2
12710.00 16.500	127.00	Subarea (UH) Added to	Stream	#2	0.0	43.6
127.00 19.583	127.00	Stream #2 Added to:	Stream	#1	2413.2	2415.6
127.00	127.00	Zero Out:	Stream	#2	43.6	0.0
•				+		+-
127.00 19.583	127.00 2108.88	3	Stream			2415.6
•				+		+-
Notes: 1 = INTERVAL	BASIN MODEI	L VOLUME EXCEEDED; 2 =				
THE DESIGN ST		IMATES DO NOT EXTEND PA	ADI Z DA	LIS AFTI	ER IDE FEAR	DWI OL
+						
		+				

END OF FLOODSCx ROUTING ANALYSIS

FLOOD ROUTING ANALYSIS USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)

(c) Copyright 1989-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1264

Analysis prepared by:

Michael Baker International 5 Hutton Centre Drive Suite 500 Santa Ana, CA 92707

********************** DESCRIPTION OF STUDY ***************** * RANCHO MISSION VIEJO - CALIBRATED FREE DRAINING UH * ULTIMATE CONDITION - REGIONAL NODE 133C * 5-YR EV JUNE 2019 ROKAMOTO

FILE NAME: EV0533CF.DAT

TIME/DATE OF STUDY: 06:45 06/12/2019

** INPUT SUMMARY **

FLOW PROCESS FROM NODE 10100.00 TO NODE 119.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<

WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 3.308 HOURS

VALLEY (DEVELOPED) S-GRAPH SELECTED

MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.496; LOW LOSS FRACTION = 0.845 SPECIFIED PEAK RAINFALL DEPTHS (INCH):

5-MINUTE = 0.24; 30-MINUTE = 0.46; 1-HOUR = 0.65

3-HOUR = 1.21; 6-HOUR = 1.80; 24-HOUR = 3.19

*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408

3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936

FLOW PROCESS FROM NODE 119.00 TO NODE 12603.00 IS CODE = 5.2

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<

THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).

ASSUMED REGULAR CHANNEL INFORMATION:

Date: 06/13/2019

BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00

UPSTREAM ELEVATION(FT) = 341.63; DOWNSTREAM ELEVATION(FT) = 312.40

File name: EV0533CF.RES Page 1

CHANNEL LENGTH (FT) = 3157.79 MANNING'S FACTOR = 0.030CONSTANT LOSS RATE(CFS) = 0.00 _____ FLOW PROCESS FROM NODE 810.00 TO NODE 12603.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<< WATERSHED AREA = 171.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 0.134 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.290; LOW LOSS FRACTION = 0.598 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58 3-HOUR = 0.97; 6-HOUR = 1.34; 24-HOUR = 2.24*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408 3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936 ************************* FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 7 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1 -----FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 6 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<> ______ FLOW PROCESS FROM NODE 12603.00 TO NODE 126.00 IS CODE = 5.2 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>> _____ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00UPSTREAM ELEVATION(FT) = 312.40; DOWNSTREAM ELEVATION(FT) = 286.00 CHANNEL LENGTH(FT) = 3046.70 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00 ************************ FLOW PROCESS FROM NODE 920.00 TO NODE 126.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<

> Date: 06/13/2019 File name: FV0533CF.RFS Page 2

```
______
 WATERSHED AREA = 553.800 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.253 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.424; LOW LOSS FRACTION = 0.818
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.97; 6-HOUR = 1.34; 24-HOUR = 2.24
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
______
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*****************
 FLOW PROCESS FROM NODE 600.00 TO NODE 126.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 185.300 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.314 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.490; LOW LOSS FRACTION = 0.958
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.97; 6-HOUR = 1.34; 24-HOUR = 2.24
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 12720.50 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 286.00; DOWNSTREAM ELEVATION(FT) =
 CHANNEL LENGTH (FT) = 4077.05 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 430.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 315.200 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.271 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.243; LOW LOSS FRACTION = 0.472
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.97; 6-HOUR = 1.34; 24-HOUR = 2.24
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
*******************
 FLOW PROCESS FROM NODE 413.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
_____
 WATERSHED AREA = 124.300 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.187 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.230; LOW LOSS FRACTION = 0.459
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.97; 6-HOUR = 1.34; 24-HOUR = 2.24
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
```

Date: 06/13/2019 File name: EV0533CF.RES Page 3 Date: 06/13/2019 File name: EV0533CF.RES Page 4

```
*************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
_____
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
______
************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12741.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 258.00; DOWNSTREAM ELEVATION(FT) = 247.00
 CHANNEL LENGTH (FT) = 2294.66 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
*****************
 FLOW PROCESS FROM NODE 320.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 675.500 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.351 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.209; LOW LOSS FRACTION = 0.415
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.97; 6-HOUR = 1.34; 24-HOUR = 2.24
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
***********************
```

```
>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #4<
______
 WATERSHED AREA = 195.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.433 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.405; LOW LOSS FRACTION = 0.770
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.97; 6-HOUR = 1.34; 24-HOUR = 2.24
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
********************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
 >>>>STREAM NUMBER 4 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
 >>>>STREAM NUMBER 4 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 127.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.10 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 247.00; DOWNSTREAM ELEVATION(FT) =
                                            240.00
 CHANNEL LENGTH(FT) = 819.00 MANNING'S FACTOR = 0.030
```

FLOW PROCESS FROM NODE 390.00 TO NODE 12741.00 IS CODE = 1

Date: 06/13/2019 File name: EV0533CF.RES Page 5 Date: 06/13/2019 File name: EV0533CF.RES Page 6

```
CONSTANT LOSS RATE (CFS) = 0.00
******************
 FLOW PROCESS FROM NODE 12710.00 TO NODE 127.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 944.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.429 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.494; LOW LOSS FRACTION = 0.958
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.97; 6-HOUR = 1.34; 24-HOUR = 2.24
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 240.00; DOWNSTREAM ELEVATION(FT) =
                                               215.00
 CHANNEL LENGTH (FT) = 3242.32
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
FLOW PROCESS FROM NODE 50220.00 TO NODE 50347.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
```

```
WATERSHED AREA = 1120.700 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.453 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.362; LOW LOSS FRACTION = 0.671
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.97; 6-HOUR = 1.34; 24-HOUR = 2.24
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
FLOW PROCESS FROM NODE 50347.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 313.00; DOWNSTREAM ELEVATION(FT) =
                                                215.00
 CHANNEL LENGTH (FT) = 2700.00
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 129.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 215.00; DOWNSTREAM ELEVATION(FT) =
                                                213.00
 CHANNEL LENGTH(FT) = 1663.10 MANNING'S FACTOR = 0.030
```

Date: 06/13/2019 File name: EV0533CF.RES Page 7 Date: 06/13/2019 File name: EV0533CF.RES Page 8

```
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 213.00; DOWNSTREAM ELEVATION(FT) =
                                                     212.00
 CHANNEL LENGTH (FT) = 1389.52 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 13010.00 TO NODE 132.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 4924.400 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.986 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.406; LOW LOSS FRACTION = 0.789
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.97; 6-HOUR = 1.34; 24-HOUR = 2.24
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
*******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 13305.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 427.51; DOWNSTREAM ELEVATION(FT) =
                                                     315.00
 CHANNEL LENGTH (FT) = 9760.05
                           MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE (CFS) = 0.00
```

File name: EV0533CF.RES

Date: 06/13/2019

```
______
*************************
 FLOW PROCESS FROM NODE 13305.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 315.00; DOWNSTREAM ELEVATION(FT) =
                                            212.00
 CHANNEL LENGTH (FT) = 6877.24
                       MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE(CFS) = 0.00
_____
*******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
______
 WATERSHED AREA = 1715.900 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.699 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.374; LOW LOSS FRACTION = 0.689
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.97; 6-HOUR = 1.34; 24-HOUR = 2.24
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.308; 30-MINUTE = 0.363; 1-HOUR = 0.408
  3-HOUR = 0.754; 6-HOUR = 0.891; 24-HOUR = 0.936
***********************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<
______
*****************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

*******	******	*******	*****
FLOW PROCESS FROM NODE	133.00 TO NODE	133.00 IS CODE = 6	
>>>>STREAM NUMBER 2 CLEA	RED AND SET TO Z	ERO<<<<	
*******	******	********	*****
FLOW PROCESS FROM NODE	133.00 TO NODE	133.00 IS CODE = 11	
>>>>VIEW STREAM NUMBER 1	HYDROGRAPH<		

Date: 06/13/2019 File name: EV0533CF.RES Page 11 Date: 06/13/2019 File name: EV0533CF.RES Page 12

```
* AES FLOODSCx PROGRAM RESULTS SUMMARY *
|INPUT FILENAME: [EV0533CF.DAT ]
Page: 1 of
|UPSTREAM DOWNSTREAM|
                                      | UPSTREAM DOWNSTREAM|
TIME(2) TO | MAX. STORAGE|
| NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) | PEAK (CFS) |
PEAK (HR) | MODELED (AF) | FOOTNOTES |
| 10100.00
         119.00| Subarea (UH) Added to Stream #1| 0.0
                                                  2381.91
19.333 I
          2357.1|
19.417 |
| 810.00 | 12603.00| Subarea (UH) Added to Stream #2|
                                                  39.01
16.167 |
| 12603.00 | 12603.00 | Stream #2 Added to: Stream #1 | 2357.1
                                                  2361.4|
| 12603.00 | 12603.00| Zero Out:
                                         39.0
                              Stream #2|
                                                   0.01
| 12603.00 | 126.00 | Convex Routing: | Stream #1 | 2361.4
                                                  2346.71
          19.250 |
| 920.00 | 126.00| Subarea (UH) Added to Stream #2|
                                        0.0
                                                    60.0|
16.333 |
         126.00| Stream #2 Added to: Stream #1|
126.00
                                        2346.7
                                                  2353.31
19.250 I
           1 126.00
                              Stream #21
         126.00| Zero Out:
                                         60.0
                                                   0.01
| 600.00 | 126.00| Subarea (UH) Added to Stream #2|
                                                    10.01
16.417 |
| 126.00 | 126.00| Stream #2 Added to: Stream #1| 2353.3
                                                  2353.81
19.250
| 126.00 | 126.00| Zero Out:
                              Stream #2|
                                         10.0
                                                   0.0
                | 126.00 12720.50| Convex Routing: Stream #1|
                                          2353.8
                                                  2348.3|
          | 430.00 12720.50| Subarea (UH) Added to Stream #2|
                                            0.0
                                                    67.2|
16.333 I
| 413.00 | 12720.50| Subarea (UH) Added to Stream #3|
                                                    32.01
16.250 I
| 12720.50 | 12720.50| Stream #3 Added to: Stream #2| 67.2
                                                    93.7|
         16.250 I
| 12720.50 | 12720.50| Zero Out:
                              Stream #3|
                                        32.0
                                                   0.01
         | 12720.50 | 12720.50| Stream #2 Added to: Stream #1|
                                          2348.3
                                                2362.51
19.583 |
         | 12720.50 | 12720.50 | Zero Out: | Stream #2|
                                         93.7
                                                  0.0
Date: 06/13/2019 File name: EV0533CF.RES
                                           Page 13
```

		Convex Routing:				
320.00	12741.00	++ Subarea (UH) Added to	Stream	#2	0.0	141.0
16.417 390.00	12741.00	Subarea (UH) Added to	Stream	#4	0.0	18.1
12741.00	12741.00	Stream #4 Added to:	Stream	#2	141.0	158.0
16.417 12741.00	12741.00	Zero Out:	Stream	#4	18.1	0.0
12741.00 19.500	12741.00	Stream #2 Added to:	Stream	#1	2361.3	2389.2
		 ++ Zero Out:				
		Convex Routing:				
19.583 12710.00						
16.500						
127.00	127.00	Zero Out:	Stream	#2	40.7	0.0
+-		++ Convex Routing:		·		
19.667	50347 001	Subarea (IIH) Added to	Stream	#21	0 0	130 51
16.500 50347.00	12902.00	Convex Routing:	Stream	#2	130.5	128.8
16.583 12902.00	12902.00	 Stream #2 Added to:	Stream	#1	2390.3	2414.3
		Convex Routing: Stream #2 Added to: Zero Out:				
+-		+				
19.667		Convex Routing:				
16.333	1	Subarea (UH) Added to				
19.667		Stream #2 Added to:				
129.00	129.00	Zero Out:	Stream	#2	37.2	0.0
		Subarea (UH) Added to				
Notes: 1 = INTERVAL 3 = THE DESIGN ST	BASIN MODEI RUNOFF ESTI	L VOLUME EXCEEDED; 2 =				
		+				
Date	e: 06/13/2019	File name: EV0533CF.	RES		Pag	e 14

UPSTREAM	 DOWNSTREAM MAX. STORAG				I	UPSTREAM	DOWNSTREAM
NODE # PEAK (HR)	NODE # MODELED (AF	HYDROLOGI) FOOTNO	C/HYDRAULIC TES				
129.00	129.00	Stream #2	Added to:	Stream	#1	2415.2	2422.5
129.00	129.00	Zero Out:		Stream	#2	49.8	0.0
129.00	133.00	Convex Ro	uting:	Stream	#1	2422.5	2420.2
	132.00		UH) Added t	o Stream	#2	0.0	326.0
17.000 132.00 1.500	 13305.00 	Convex Ro	uting:	Stream	#2	326.0	317.2
+		-+	+				
17.833	133.00						
	133.00						
133.00	133.00	Stream #3	Added to:	Stream	#2	315.2	427.8
133.00	133.00	Zero Out:		Stream	#3	166.3	0.0
18.417	133.00 	Stream #2					
133.00	133.00	-+ Zero Out:					0.0
18.417	133.00 2530.77	View:		Stream			2751.9
Notes: 1 = NTERVAL 3 =	BASIN MODEL RUNOFF ESTI	-+ VOLUME E	+ XCEEDED; 2 NOT EXTEND	= TIME IS	S AT	END OF 5-M	IINUTE UNIT

Date: 06/13/2019 File name: EV0533CF.RES Page 15 Date: 06/13/2019 File name: EV0533CF.RES Page 16

F L O O D R O U T I N G A N A L Y S I S USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)

(c) Copyright 1989-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1264

Analysis prepared by:

Michael Baker International 5 Hutton Centre Drive Suite 500 Santa Ana, CA 92707

* RANCHO MISSION VIEJO - CALIBRATED FREE DRAINING UH

* ULTIMATE CONDITION - REGIONAL NODE 133U

* 5-YR EV JUNE 2019 ROKAMOTO

FILE NAME: EV0533UF.DAT

TIME/DATE OF STUDY: 06:44 06/12/2019

** INPUT SUMMARY **

FLOW PROCESS FROM NODE 10100.00 TO NODE 119.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<

WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE *USER ENTERED "LAG" TIME = 3.308 HOURS

ODDIN DINIBROD DINO TIMO 5.500 I

VALLEY (DEVELOPED) S-GRAPH SELECTED

MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.496; LOW LOSS FRACTION = 0.845 SPECIFIED PEAK RAINFALL DEPTHS(INCH):

5-MINUTE = 0.24; 30-MINUTE = 0.47; 1-HOUR = 0.66

3-HOUR = 1.22; 6-HOUR = 1.81; 24-HOUR = 3.20

*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422

3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<

7777110DE CHIMICE HOUTING OF GILDER HE TILL CONVENTION OF CONVENTION OF

THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).

ASSUMED REGULAR CHANNEL INFORMATION:

Date: 06/13/2019

BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00

UPSTREAM ELEVATION(FT) = 341.63; DOWNSTREAM ELEVATION(FT) = 312.40

File name: EV0533UF.RES Page 1

CHANNEL LENGTH (FT) = 3157.79 MANNING'S FACTOR = 0.030CONSTANT LOSS RATE(CFS) = 0.00 _____ FLOW PROCESS FROM NODE 810.00 TO NODE 12603.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<< ______ WATERSHED AREA = 171.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 0.134 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.290; LOW LOSS FRACTION = 0.598 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58 3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422 3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940************************* FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 7 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1 -----FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 6 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<> ______ FLOW PROCESS FROM NODE 12603.00 TO NODE 126.00 IS CODE = 5.2 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>> _____ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00UPSTREAM ELEVATION(FT) = 312.40; DOWNSTREAM ELEVATION(FT) = 286.00 CHANNEL LENGTH(FT) = 3046.70 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00 ************************ FLOW PROCESS FROM NODE 920.00 TO NODE 126.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<

```
______
 WATERSHED AREA = 553.800 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.253 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.424; LOW LOSS FRACTION = 0.818
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
______
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*****************
 FLOW PROCESS FROM NODE 600.00 TO NODE 126.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 185.300 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.314 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.490; LOW LOSS FRACTION = 0.958
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 12720.50 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 286.00; DOWNSTREAM ELEVATION(FT) =
 CHANNEL LENGTH (FT) = 4077.05 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 430.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 315.200 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.271 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.243; LOW LOSS FRACTION = 0.472
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
*******************
 FLOW PROCESS FROM NODE 413.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
_____
 WATERSHED AREA = 124.300 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.187 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.230; LOW LOSS FRACTION = 0.459
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
```

Date: 06/13/2019 File name: EV0533UF.RES Page 3 Date: 06/13/2019 File name: EV0533UF.RES Page 4

```
*************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
_____
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
______
************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12741.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 258.00; DOWNSTREAM ELEVATION(FT) = 247.00
 CHANNEL LENGTH (FT) = 2294.66 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
*****************
 FLOW PROCESS FROM NODE 320.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 675.500 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.351 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.209; LOW LOSS FRACTION = 0.415
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
***********************
```

```
>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #4<
______
 WATERSHED AREA = 195.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.433 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.405; LOW LOSS FRACTION = 0.770
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
***********************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
 >>>>STREAM NUMBER 4 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
 >>>>STREAM NUMBER 4 CLEARED AND SET TO ZERO<
_____
*******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 127.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.10 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 247.00; DOWNSTREAM ELEVATION(FT) =
                                            240.00
 CHANNEL LENGTH(FT) = 819.00 MANNING'S FACTOR = 0.030
```

FLOW PROCESS FROM NODE 390.00 TO NODE 12741.00 IS CODE = 1

Date: 06/13/2019 File name: EV0533UF.RES Page 5 Date: 06/13/2019 File name: EV0533UF.RES Page 6

```
CONSTANT LOSS RATE (CFS) = 0.00
******************
 FLOW PROCESS FROM NODE 12710.00 TO NODE 127.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 944.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.429 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.494; LOW LOSS FRACTION = 0.958
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 240.00; DOWNSTREAM ELEVATION(FT) =
                                               215.00
 CHANNEL LENGTH (FT) = 3242.32
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
FLOW PROCESS FROM NODE 50220.00 TO NODE 50347.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
```

```
WATERSHED AREA = 1120.700 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.453 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.362; LOW LOSS FRACTION = 0.671
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
FLOW PROCESS FROM NODE 50347.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 313.00; DOWNSTREAM ELEVATION(FT) =
                                                215.00
 CHANNEL LENGTH (FT) = 2700.00
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 129.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 215.00; DOWNSTREAM ELEVATION(FT) =
                                                213.00
 CHANNEL LENGTH(FT) = 1663.10 MANNING'S FACTOR = 0.030
```

Date: 06/13/2019 File name: EV0533UF.RES Page 7 Date: 06/13/2019 File name: EV0533UF.RES Page 8

```
CONSTANT LOSS RATE(CFS) = 0.00
_____
*****************
 FLOW PROCESS FROM NODE 50400.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 420.000 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.220 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.461; LOW LOSS FRACTION = 0.889
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
*******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 214.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.257 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.211; LOW LOSS FRACTION = 0.441
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
*************************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 213.00; DOWNSTREAM ELEVATION(FT) =
                                            212.00
 CHANNEL LENGTH (FT) = 1389.52 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 11
 >>>>VIEW STREAM NUMBER 1 HYDROGRAPH<
_____
```

Date: 06/13/2019 File name: EV0533UF.RES Page 9 Date: 06/13/2019 File name: EV0533UF.RES Page 10

		* AES	FLOODSC	Cx I	PROGRAM RESU	LTS SUMMARY
age: 1 of	1	33UF.DAT]				
+		++				DOWNSTREAM
NODE #	NODE #	GE HYDROLOGIC/HYDRAULIC F) FOOTNOTES	PROCESS			
+ 10100.00	119.00	++ Subarea (UH) Added to	Stream	#1	0.0	2510.9
9.333	12603.00	Convex Routing:	Stream	#1	2510.9	2480.6
9.417 810.00	1	Subarea (UH) Added to				
6.167 12603.00 9.417	12603.00	Stream #2 Added to:	Stream	#1	2480.6	2484.8
12603.00	12603.00	Zero Out:				
12603.00	126.00	++ Convex Routing:	Stream	#1	2484.8	2461.7
	126.00	 Subarea (UH) Added to	Stream	#2	0.0	67.4
6.333 126.00 9.250	126.00	Stream #2 Added to:	Stream	#1	2461.7	2468.3
		Zero Out:	Stream	#2	67.4	0.0
6.417 I	1	Subarea (UH) Added to				
+		+ ++ Stream #2 Added to:				
9.250	126.00	Zero Out:	Stream	#2	11.9	0.0
		 Convex Routing:				
9.583 430.00		Subarea (UH) Added to	Stream	#2	0.0	71.9
6.250 l	1	 Subarea (UH) Added to				
12720.50		++ Stream #3 Added to:				
	12720.50	Zero Out:	Stream	#3	34.4	0.0
		Stream #2 Added to:	Stream	#1	2467.1	2481.4
9.583 12720.50	12720.50	Zero Out:	Stream	#2	100.2	0.0

		Convex Routing:				
+-		++ Subarea (UH) Added to				
16.417 390.00	12741.00	Subarea (UH) Added to	Stream	#41	0.0	19.91
12741.00	12741.00	Stream #4 Added to:	Stream	#2	149.7	168.1
16.417 12741.00	12741.00	Zero Out:	Stream	#4	19.9	0.0
		Stream #2 Added to:				
+-		Zero Out:				
12741.00 19.583	127.00	Convex Routing:	Stream	#1	2506.3	2505.9
12710.00 6.500		Subarea (UH) Added to	Stream	#2	0.0	48.0
127.00 19.583	127.00	Stream #2 Added to:	Stream	#1	2505.9	2508.5
127.00 	127.00	Zero Out:	Stream	#2	48.0	0.0
127.00	12902.00	++ Convex Routing:	Stream	#1	2508.5	2507.0
19.667	50347.00	Subarea (UH) Added to	Stream	#2	0.0	140.7
50347.00	12902.00	Convex Routing:	Stream	#2	140.7	138.8
12902.00 19.667	12902.00	Convex Routing: Stream #2 Added to: Zero Out:	Stream	#1	2507.0	2530.6
		Zero Out:				
12902.00		++ Convex Routing:	Stream	#1	2530.6	2527.6
19.750 50400.00		 Subarea (UH) Added to	Stream	#2	0.0	42.9
16.333 129.00 19.750		Stream #2 Added to:	Stream	#1	2527.6	2530.4
129.00			Stream	#2	42.9	0.0
16 222 1	1	Subarea (UH) Added to				
Notes: 1 = INTERVAL 3 = THE DESIGN ST	BASIN MODEI RUNOFF ESTI	L VOLUME EXCEEDED; 2 =	TIME IS	S AT	END OF 5-MIN	UTE UNIT
		+				

* AES FLOODSCx PROGRAM RESULTS SUMMARY * |INPUT FILENAME: [EV0533UF.DAT] Page: 2 of | -----+ | UPSTREAM DOWNSTREAM| |UPSTREAM DOWNSTREAM| TIME(2) TO | MAX. STORAGE| | | NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) | PEAK (CFS) | PEAK (HR) | MODELED (AF) | FOOTNOTES | | 129.00 | 129.00| Stream #2 Added to: Stream #1| 2530.4 2537.5| 19.750 | | 129.00 | 129.00| Zero Out: Stream #2| 53.2 0.0| | 129.00 | 133.00 | Convex Routing: Stream #1 | 2537.5 | 2534.5 | 19.750 | | 133.00 | 133.00| View: Stream #1| 2534.5| 19.750 | 2287.78| 3 | +-----------+ |Notes: 1 = BASIN MODEL VOLUME EXCEEDED; 2 = TIME IS AT END OF 5-MINUTE UNIT 3 = RUNOFF ESTIMATES DO NOT EXTEND PAST 2 DAYS AFTER THE PEAK DAY OF THE DESIGN STORM

END OF FLOODSCx ROUTING ANALYSIS

Date: 06/13/2019 File name: EV0533UF.RES Page 13 Date: 06/13/2019 File name: EV0533UF.RES Page 14

FLOOD ROUTING ANALYSIS USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)

(c) Copyright 1989-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1264

Analysis prepared by:

Michael Baker International 5 Hutton Centre Drive Suite 500 Santa Ana, CA 92707

********************** DESCRIPTION OF STUDY ***************** * RANCHO MISSION VIEJO - CALIBRATED FREE DRAINING UH

* ULTIMATE CONDITION - REGIONAL NODE 134C

* 5-YR EV JUNE 2019 ROKAMOTO

FILE NAME: EV0534CF.DAT

TIME/DATE OF STUDY: 06:46 06/12/2019

** INPUT SUMMARY **

FLOW PROCESS FROM NODE 10100.00 TO NODE 119.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<

_____ WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE

*USER ENTERED "LAG" TIME = 3.308 HOURS

VALLEY (DEVELOPED) S-GRAPH SELECTED

MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.496; LOW LOSS FRACTION = 0.845 SPECIFIED PEAK RAINFALL DEPTHS (INCH):

5-MINUTE = 0.24; 30-MINUTE = 0.46; 1-HOUR = 0.64

3-HOUR = 1.20; 6-HOUR = 1.78; 24-HOUR = 3.14

*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397

3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933

***************** FLOW PROCESS FROM NODE 119.00 TO NODE 12603.00 IS CODE = 5.2

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<

______ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO

ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).

ASSUMED REGULAR CHANNEL INFORMATION:

BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00

UPSTREAM ELEVATION(FT) = 341.63; DOWNSTREAM ELEVATION(FT) = 312.40

CONSTANT LOSS RATE(CFS) = 0.00 _____ FLOW PROCESS FROM NODE 810.00 TO NODE 12603.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<< WATERSHED AREA = 171.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 0.134 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.290; LOW LOSS FRACTION = 0.598 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.57 3-HOUR = 0.96; 6-HOUR = 1.32; 24-HOUR = 2.20 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397 3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933************************* FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 7 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1 -----FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 6 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<> ______ FLOW PROCESS FROM NODE 12603.00 TO NODE 126.00 IS CODE = 5.2 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>> _____ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00UPSTREAM ELEVATION(FT) = 312.40; DOWNSTREAM ELEVATION(FT) = 286.00 CHANNEL LENGTH(FT) = 3046.70 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00 ************************ FLOW PROCESS FROM NODE 920.00 TO NODE 126.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<

MANNING'S FACTOR = 0.030

CHANNEL LENGTH (FT) = 3157.79

Date: 06/13/2019 File name: FV0534CF.RFS Page 2

```
______
 WATERSHED AREA = 553.800 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.253 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.424; LOW LOSS FRACTION = 0.818
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.57
  3-HOUR = 0.96; 6-HOUR = 1.32; 24-HOUR = 2.20
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
______
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
*****************
 FLOW PROCESS FROM NODE 600.00 TO NODE 126.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 185.300 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.314 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.490; LOW LOSS FRACTION = 0.958
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.57
  3-HOUR = 0.96; 6-HOUR = 1.32; 24-HOUR = 2.20
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 12720.50 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 286.00; DOWNSTREAM ELEVATION(FT) =
 CHANNEL LENGTH (FT) = 4077.05 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 430.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 315.200 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.271 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.243; LOW LOSS FRACTION = 0.472
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.57
  3-HOUR = 0.96; 6-HOUR = 1.32; 24-HOUR = 2.20
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 413.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
_____
 WATERSHED AREA = 124.300 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.187 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.230; LOW LOSS FRACTION = 0.459
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.57
  3-HOUR = 0.96; 6-HOUR = 1.32; 24-HOUR = 2.20
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
```

Date: 06/13/2019 File name: EV0534CF.RES Page 3 Date: 06/13/2019 File name: EV0534CF.RES Page 4

```
*************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
_____
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
______
************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12741.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 258.00; DOWNSTREAM ELEVATION(FT) = 247.00
 CHANNEL LENGTH (FT) = 2294.66 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
*****************
 FLOW PROCESS FROM NODE 320.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 675.500 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.351 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.209; LOW LOSS FRACTION = 0.415
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.57
  3-HOUR = 0.96; 6-HOUR = 1.32; 24-HOUR = 2.20
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
***********************
```

```
FLOW PROCESS FROM NODE 390.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #4<
______
 WATERSHED AREA = 195.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.433 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.405; LOW LOSS FRACTION = 0.770
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.57
  3-HOUR = 0.96; 6-HOUR = 1.32; 24-HOUR = 2.20
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
***********************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
 >>>>STREAM NUMBER 4 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
 >>>>STREAM NUMBER 4 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 127.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.10 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 247.00; DOWNSTREAM ELEVATION(FT) =
                                            240.00
 CHANNEL LENGTH(FT) = 819.00 MANNING'S FACTOR = 0.030
```

Date: 06/13/2019 File name: EV0534CF.RES Page 5 Date: 06/13/2019 File name: EV0534CF.RES Page 6

```
CONSTANT LOSS RATE (CFS) = 0.00
******************
 FLOW PROCESS FROM NODE 12710.00 TO NODE 127.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 944.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.429 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.494; LOW LOSS FRACTION = 0.958
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.57
  3-HOUR = 0.96; 6-HOUR = 1.32; 24-HOUR = 2.20
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 240.00; DOWNSTREAM ELEVATION(FT) =
                                               215.00
 CHANNEL LENGTH (FT) = 3242.32
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
FLOW PROCESS FROM NODE 50220.00 TO NODE 50347.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
```

```
WATERSHED AREA = 1120.700 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.453 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.362; LOW LOSS FRACTION = 0.671
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.57
  3-HOUR = 0.96; 6-HOUR = 1.32; 24-HOUR = 2.20
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
FLOW PROCESS FROM NODE 50347.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 313.00; DOWNSTREAM ELEVATION(FT) =
                                                215.00
 CHANNEL LENGTH (FT) = 2700.00
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 129.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 215.00; DOWNSTREAM ELEVATION(FT) =
                                                213.00
 CHANNEL LENGTH(FT) = 1663.10 MANNING'S FACTOR = 0.030
```

Date: 06/13/2019 File name: EV0534CF.RES Page 7 Date: 06/13/2019 File name: EV0534CF.RES Page 8

```
CONSTANT LOSS RATE (CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 50400.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 420.000 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.220 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.461; LOW LOSS FRACTION = 0.889
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.57
  3-HOUR = 0.96; 6-HOUR = 1.32; 24-HOUR = 2.20
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 214.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.257 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.211; LOW LOSS FRACTION = 0.441
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.57
  3-HOUR = 0.96; 6-HOUR = 1.32; 24-HOUR = 2.20
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 213.00; DOWNSTREAM ELEVATION(FT) =
                                                     212.00
 CHANNEL LENGTH (FT) = 1389.52 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 13010.00 TO NODE 132.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 4924.400 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.986 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.406; LOW LOSS FRACTION = 0.789
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.57
  3-HOUR = 0.96; 6-HOUR = 1.32; 24-HOUR = 2.20
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 13305.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 427.51; DOWNSTREAM ELEVATION(FT) =
                                                     315.00
 CHANNEL LENGTH (FT) = 9760.05
                            MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE (CFS) = 0.00
```

Date: 06/13/2019 File name: EV0534CF.RES Page 9 Date: 06/13/2019 File name: EV0534CF.RES Page 10

```
______
******************
 FLOW PROCESS FROM NODE 13305.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 315.00; DOWNSTREAM ELEVATION(FT) =
                                             212.00
 CHANNEL LENGTH (FT) = 6877.24 MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE(CFS) = 0.00
_____
****************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
______
 WATERSHED AREA = 1715.900 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.699 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.374; LOW LOSS FRACTION = 0.689
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.57
  3-HOUR = 0.96; 6-HOUR = 1.32; 24-HOUR = 2.20
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
********************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
_____
FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
*************************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<->
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 212.00; DOWNSTREAM ELEVATION(FT) = 173.00
 CHANNEL LENGTH (FT) = 6461.31 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 1691.600 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.353 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.406; LOW LOSS FRACTION = 0.767
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.57
  3-HOUR = 0.96; 6-HOUR = 1.32; 24-HOUR = 2.20
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
*************************
```

Date: 06/13/2019 File name: EV0534CF.RES Page 11 Date: 06/13/2019 File name: EV0534CF.RES Page 12

```
FLOW PROCESS FROM NODE 13500.00 TO NODE 134.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<
______
 WATERSHED AREA = 3859.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 2.180 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.473; LOW LOSS FRACTION = 0.843
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.57
  3-HOUR = 0.96; 6-HOUR = 1.32; 24-HOUR = 2.20
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.293; 30-MINUTE = 0.352; 1-HOUR = 0.397
  3-HOUR = 0.740; 6-HOUR = 0.887; 24-HOUR = 0.933
********************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
*******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
*******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 11
 >>>>VIEW STREAM NUMBER 1 HYDROGRAPH<
```

```
* AES FLOODSCx PROGRAM RESULTS SUMMARY *
|INPUT FILENAME: [EV0534CF.DAT ]
Page: 1 of
|UPSTREAM DOWNSTREAM|
                                 | UPSTREAM DOWNSTREAM|
TIME(2) TO | MAX. STORAGE|
| NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) | PEAK (CFS) |
PEAK (HR) | MODELED (AF) | FOOTNOTES |
| 10100.00 | 119.00| Subarea (UH) Added to Stream #1| 0.0 2281.1|
19.333 I
        | 119.00 12603.00| Convex Routing: Stream #1| 2281.1 2260.2|
19.417 |
| 810.00 | 12603.00| Subarea (UH) Added to Stream #2| 0.0
16.167
| 12603.00 | 12603.00| Stream #2 Added to: Stream #1| | 2260.2
                                            2264.31
| 12603.00 | 12603.00| Zero Out:
                          Stream #2| 36.5
                                            0.01
| 12603.00 | 126.00| Convex Routing: | Stream #1| | 2264.3
                                            2255.41
19.250
920.00 126.00| Subarea (UH) Added to Stream #2| 0.0
                                           54.31
16.333 I
         1
| 126.00 | 126.00| Stream #2 Added to: Stream #1| 2255.4
                                           2261.91
         19.250 I
| 126.00 | 126.00| Zero Out: | Stream #2| 54.3
                                           0.01
| 600.00 | 126.00| Subarea (UH) Added to Stream #2| 0.0
                                            8.61
16.417 |
+-----
| 126.00 | 126.00| Stream #2 Added to: Stream #1| 2261.9
                                            2262.41
19.250
| 126.00 | 126.00| Zero Out:
                          Stream #2| 8.6
                                            0.01
              | 126.00 12720.50| Convex Routing: Stream #1| 2262.4
                                           2255.51
19.417
| 430.00 12720.50| Subarea (UH) Added to Stream #2| 0.0
                                             63.61
16.333 I
| 413.00 12720.50| Subarea (UH) Added to Stream #3|
                                             30.31
16.250 I
        _______
| 12720.50 | 12720.50| Stream #3 Added to: Stream #2| 63.6
                                             89.11
16.250 |
| 12720.50 | 12720.50 | Zero Out: Stream #3| 30.3
                                            0.01
| 12720.50 | 12720.50| Stream #2 Added to: Stream #1| 2255.5
                                            2270.01
        19.333 |
| 12720.50 | 12720.50 | Zero Out: | Stream #2 | 89.1
                                            0.0
Date: 06/13/2019 File name: EV0534CF.RES
                                      Page 14
```

		Convex Routing:				
	12741.00	++ Subarea (UH) Added to	Stream	#2	0.0	134.1
390.00 16.500	12741.00	Subarea (UH) Added to	Stream	#4	0.0	16.8
1 12741.00	12741.001	Stream #4 Added to:	Stream	#2	134.1	149.9
12741.00	12741.00	Zero Out:	Stream	#4	16.8	0.0
12741.00	12741.00	Stream #2 Added to:	Stream	#1	2269.1	2296.5
+-		++				
		Zero Out:				
12741.00 19.500	127.00	Convex Routing: Subarea (UH) Added to	Stream	#1	2296.5	2296.3
16 500 1	1	1				
127.00		Stream #2 Added to:	Stream	#1	2296.3	2298.8
127.00	127.00	Zero Out:	Stream	#2	35.0	0.0
		++ Convex Routing:	Stream	#1	2298.8	2297.9
	50347.00	Subarea (UH) Added to	Stream	#2	0.0	122.2
	12902.00	Convex Routing:	Stream	#2	122.2	120.7
12902.00 8.333	12902.00	Stream #2 Added to:	Stream	#1	2297.9	2330.6
12902.00		Zero Out:				
+-		++ Convex Routing:				
18.417 50400.00	129.00	 Subarea (UH) Added to	Stream	#2	0.0	32.9
16.333 129.00	 129.00	 Stream #2 Added to:	Stream	#1	2327.8	2331.8
18.417 129.00	129.00	Zero Out:	Stream	#2	32.9	0.0
16.333		 Subarea (UH) Added to 			0.0	47.2
	BASIN MODE:	L VOLUME EXCEEDED; 2 =	TIME IS	S AT AYS A	END OF 5-MIN	UTE UNIT

+		+ + AEC	EI OODG		DOCDAM DECL	THE CIMMADY +
Page: 2 of	1	^ AES				LTS SUMMARY *
 UPSTREAM I	OOWNSTREAM	++				DOWNSTREAM
	NODE #	GE HYDROLOGIC/HYDRAULIC : F) FOOTNOTES				
+-	129.00	++ Stream #2 Added to:				
129.00	129.00	Zero Out:	Stream	#2	47.2	0.0
129.00		Convex Routing:	Stream	#1	2342.6	2340.1
18.500 13010.00	132.00	Subarea (UH) Added to	Stream	#2	0.0	306.1
	13305.00	Convex Routing:				
13305.00	133.00	++ Convex Routing:				
	133.00	Subarea (UH) Added to	Stream	#3	0.0	156.5
		Stream #3 Added to:	Stream	#2	297.0	406.5
17.667 133.00	133.00	Zero Out:	Stream	#3	156.5	0.0
18.417	133.00	Stream #2 Added to:				
+-		++ Zero Out:				•
18.583		Convex Routing:				
16.417		Subarea (UH) Added to				
18.250	-	Stream #2 Added to:				
134.00 +	134.00 	Zero Out: 	Stream			0.0
13500.00		++ Subarea (UH) Added to	Stream	#2	0.0	147.6
18.083 134.00	134.00	Stream #2 Added to:	Stream	#1	2705.2	2852.4
18.250 134.00	134.00		Stream	#2	147.6	0.0
134.00 8.250	134.00 2643.75	View:	Stream	#1		2852.4

File name: EV0534CF.RES

Page 17

Date: 06/13/2019

++
+
Notes: 1 = BASIN MODEL VOLUME EXCEEDED; 2 = TIME IS AT END OF 5-MINUTE UNIT
INTERVAL
3 = RUNOFF ESTIMATES DO NOT EXTEND PAST 2 DAYS AFTER THE PEAK DAY OF
THE DESIGN STORM
+
+

END OF FLOODSCx ROUTING ANALYSIS

F L O O D R O U T I N G A N A L Y S I S USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)

(c) Copyright 1989-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1264

Analysis prepared by:

Michael Baker International 5 Hutton Centre Drive Suite 500 Santa Ana, CA 92707

FILE NAME: EV0534UF.DAT

TIME/DATE OF STUDY: 06:45 06/12/2019

** INPUT SUMMARY **

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<

WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE

*USER ENTERED "LAG" TIME = 3.308 HOURS

VALLEY (DEVELOPED) S-GRAPH SELECTED

MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.496; LOW LOSS FRACTION = 0.845 SPECIFIED PEAK RAINFALL DEPTHS(INCH):

5-MINUTE = 0.24; 30-MINUTE = 0.47; 1-HOUR = 0.66

3-HOUR = 1.22; 6-HOUR = 1.81; 24-HOUR = 3.20

*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405

3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>

THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).

ASSUMED REGULAR CHANNEL INFORMATION:

Date: 06/13/2019

BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00

UPSTREAM ELEVATION(FT) = 341.63; DOWNSTREAM ELEVATION(FT) = 312.40

File name: EV0534UF.RES Page 1

CHANNEL LENGTH (FT) = 3157.79 MANNING'S FACTOR = 0.030CONSTANT LOSS RATE(CFS) = 0.00 _____ FLOW PROCESS FROM NODE 810.00 TO NODE 12603.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<< ______ WATERSHED AREA = 171.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 0.134 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.290; LOW LOSS FRACTION = 0.598 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58 3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405 3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936 ************************* FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 7 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1 -----FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 6 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<> ______ FLOW PROCESS FROM NODE 12603.00 TO NODE 126.00 IS CODE = 5.2 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>> _____ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00UPSTREAM ELEVATION(FT) = 312.40; DOWNSTREAM ELEVATION(FT) = 286.00 CHANNEL LENGTH(FT) = 3046.70 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00 ************************ FLOW PROCESS FROM NODE 920.00 TO NODE 126.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<

```
______
 WATERSHED AREA = 553.800 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.253 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.424; LOW LOSS FRACTION = 0.818
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
______
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
*****************
 FLOW PROCESS FROM NODE 600.00 TO NODE 126.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 185.300 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.314 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.490; LOW LOSS FRACTION = 0.958
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 12720.50 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 286.00; DOWNSTREAM ELEVATION(FT) =
 CHANNEL LENGTH (FT) = 4077.05 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 430.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 315.200 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.271 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.243; LOW LOSS FRACTION = 0.472
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
*******************
 FLOW PROCESS FROM NODE 413.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
_____
 WATERSHED AREA = 124.300 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.187 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.230; LOW LOSS FRACTION = 0.459
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
```

Date: 06/13/2019 File name: EV0534UF.RES Page 3 Date: 06/13/2019 File name: EV0534UF.RES Page 4

```
*************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
_____
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
______
************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12741.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 258.00; DOWNSTREAM ELEVATION(FT) = 247.00
 CHANNEL LENGTH (FT) = 2294.66 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
*****************
 FLOW PROCESS FROM NODE 320.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 675.500 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.351 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.209; LOW LOSS FRACTION = 0.415
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
***********************
```

```
>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #4<
______
 WATERSHED AREA = 195.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.433 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.405; LOW LOSS FRACTION = 0.770
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
***********************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
 >>>>STREAM NUMBER 4 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
 >>>>STREAM NUMBER 4 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 127.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.10 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 247.00; DOWNSTREAM ELEVATION(FT) =
                                            240.00
 CHANNEL LENGTH(FT) = 819.00 MANNING'S FACTOR = 0.030
```

FLOW PROCESS FROM NODE 390.00 TO NODE 12741.00 IS CODE = 1

Date: 06/13/2019 File name: EV0534UF.RES Page 5 Date: 06/13/2019 File name: EV0534UF.RES Page 6

```
CONSTANT LOSS RATE (CFS) = 0.00
*****************
 FLOW PROCESS FROM NODE 12710.00 TO NODE 127.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 944.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.429 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.494; LOW LOSS FRACTION = 0.958
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 240.00; DOWNSTREAM ELEVATION(FT) =
                                               215.00
 CHANNEL LENGTH (FT) = 3242.32
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
FLOW PROCESS FROM NODE 50220.00 TO NODE 50347.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
```

```
WATERSHED AREA = 1120.700 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.453 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.362; LOW LOSS FRACTION = 0.671
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
FLOW PROCESS FROM NODE 50347.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 313.00; DOWNSTREAM ELEVATION(FT) =
                                                215.00
 CHANNEL LENGTH (FT) = 2700.00
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 129.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 215.00; DOWNSTREAM ELEVATION(FT) =
                                               213.00
 CHANNEL LENGTH(FT) = 1663.10 MANNING'S FACTOR = 0.030
```

Date: 06/13/2019 File name: EV0534UF.RES Page 7 Date: 06/13/2019 File name: EV0534UF.RES Page 8

```
CONSTANT LOSS RATE (CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 50400.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 420.000 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.220 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.461; LOW LOSS FRACTION = 0.889
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 214.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.257 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.211; LOW LOSS FRACTION = 0.441
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 213.00; DOWNSTREAM ELEVATION(FT) =
                                                     212.00
 CHANNEL LENGTH (FT) = 1389.52 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 13010.00 TO NODE 132.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 4924.400 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.986 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.406; LOW LOSS FRACTION = 0.789
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
*******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 13305.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 427.51; DOWNSTREAM ELEVATION(FT) =
                                                     315.00
 CHANNEL LENGTH (FT) = 9760.05
                           MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE (CFS) = 0.00
```

File name: EV0534UF.RES

Date: 06/13/2019

Date: 06/13/2019 File name: EV0534UF.RES Page 9

Page 10

```
______
******************
 FLOW PROCESS FROM NODE 13305.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 315.00; DOWNSTREAM ELEVATION(FT) =
                                             212.00
 CHANNEL LENGTH (FT) = 6877.24 MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE(CFS) = 0.00
_____
****************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
______
 WATERSHED AREA = 1715.900 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.699 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.374; LOW LOSS FRACTION = 0.689
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
*********************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
_____
FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
______
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
*************************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<->
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 212.00; DOWNSTREAM ELEVATION(FT) = 173.00
 CHANNEL LENGTH (FT) = 6461.31 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 1691.600 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.353 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.406; LOW LOSS FRACTION = 0.767
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.43; 1-HOUR = 0.58
  3-HOUR = 0.98; 6-HOUR = 1.35; 24-HOUR = 2.25
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.304; 30-MINUTE = 0.358; 1-HOUR = 0.405
  3-HOUR = 0.750; 6-HOUR = 0.890; 24-HOUR = 0.936
*******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
*************************
```

Date: 06/13/2019 File name: EV0534UF.RES Page 11 Date: 06/13/2019 File name: EV0534UF.RES Page 12

FLOW	PROCESS	FROM NODE	134.00 TO	NODE	134.00 IS	CODE =	11
------	---------	-----------	-----------	------	-----------	--------	----

>>>>VIEW STREAM NUMBER 1 HYDROGRAPH<

```
* AES FLOODSCx PROGRAM RESULTS SUMMARY *
|INPUT FILENAME: [EV0534UF.DAT ]
Page: 1 of
|UPSTREAM DOWNSTREAM|
                               | UPSTREAM DOWNSTREAM|
TIME(2) TO | MAX. STORAGE|
| NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) | PEAK (CFS) |
PEAK (HR) | MODELED (AF) | FOOTNOTES |
19.333 I
        | 119.00 12603.00| Convex Routing: Stream #1| 2391.2 2366.3|
19.417 |
810.00 12603.00| Subarea (UH) Added to Stream #2| 0.0 38.1|
16.167
| 12603.00 | 12603.00 | Stream #2 Added to: Stream #1 | 2366.3 | 2370.5 |
19.417 |
| 12603.00 | 12603.00| Zero Out:
                         Stream #2| 38.1
                                          0.01
| 12603.00 | 126.00 | Convex Routing: | Stream #1 | 2370.5
                                         2355.81
19.250
920.00 126.00| Subarea (UH) Added to Stream #2| 0.0
                                         58.21
16.333 I
         | 126.00 | 126.00| Stream #2 Added to: Stream #1| 2355.8 | 2362.4|
19.250 I
         | 126.00 | 126.00| Zero Out: | Stream #2| 58.2
                                         0.01
| 600.00 | 126.00| Subarea (UH) Added to Stream #2| 0.0
                                          9.61
16.417 |
+-----
| 126.00 | 126.00| Stream #2 Added to: Stream #1| 2362.4
                                         2362.91
19.250
| 126.00 | 126.00| Zero Out:
                        Stream #2| 9.6
                                         0.01
              | 126.00 12720.50| Convex Routing: Stream #1| 2362.9
                                        2357.21
19.583 |
        | 430.00 12720.50| Subarea (UH) Added to Stream #2| 0.0
                                        66.01
16.333 I
| 413.00 | 12720.50| Subarea (UH) Added to Stream #3| 0.0
                                           31.4
16.250 I
_______
| 12720.50 | 12720.50| Stream #3 Added to: Stream #2| 66.0
                                           92.11
       I I
16.250 I
| 12720.50 | 12720.50 | Zero Out: Stream #3| 31.4 0.0|
             | 12720.50 | 12720.50| Stream #2 Added to: Stream #1| 2357.2
                                        2371.5|
19.583
| 12720.50 | 12720.50 | Zero Out: | Stream #2 | 92.1
                                         0.0
Date: 06/13/2019 File name: EV0534UF.RES
                                   Page 14
```

		Convex Routing:				
320.00 16.417	12741.00	++ Subarea (UH) Added to	Stream	#2	0.0	138.9
390.00 16.500	12741.00	Subarea (UH) Added to	Stream	#4	0.0	17.7
1 12741.00	12741.001	Stream #4 Added to:	Stream	#2	138.9	155.5
10.417 12741.00	12741.00	Zero Out:	Stream	#4	17.7	0.0
12741.00	12741.00	Stream #2 Added to:	Stream	#1	2370.4	2398.3
+-		++				
		Zero Out:				
12741.00 19.583	127.00	Convex Routing:	Stream	#1	2398.3	2398.1
1 6 5 0 0 I	1	Subarea (UH) Added to				
127.00	127.00	Stream #2 Added to:	Stream	#1	2398.1	2400.6
127.00	127.00	Zero Out:	Stream	#2	38.9	0.0
+-		++ Convex Routing:				
50220.00 16.500		Subarea (UH) Added to	Stream	#2	0.0	128.0
	12902.00	Convex Routing:	Stream	#2	128.0	126.5
12902.00 19.583	12902.00	Stream #2 Added to:	Stream	#1	2399.5	2423.6
12902.00		Zero Out:				
+-		++				
19.667		Convex Routing: Subarea (UH) Added to				
16.333	120.001	Stream #2 Added to:	C+roam	#1:	2421 7	2424 5
19.667					35.8	
16.333		Subarea (UH) Added to				49.0
+- Notes: 1 = INTERVAL 3 = THE DESIGN ST	BASIN MODE:	L VOLUME EXCEEDED; 2 =	TIME IS	S AT AYS A	END OF 5-MIN	UTE UNIT

```
* AES FLOODSCx PROGRAM RESULTS SUMMARY *
|INPUT FILENAME: [EV0534UF.DAT ]
Page: 2 of |
|UPSTREAM DOWNSTREAM|
                                  | UPSTREAM DOWNSTREAM|
TIME(2) TO | MAX. STORAGE|
| NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) PEAK (CFS) |
PEAK (HR) | MODELED (AF) | FOOTNOTES |
| 129.00 | 129.00| Stream #2 Added to: Stream #1| 2424.5 | 2431.7|
19.667 |
| 129.00 | 129.00| Zero Out:
                          Stream #2| 49.0
                                             0.01
| 129.00 | 133.00| Convex Routing: | Stream #1| 2431.7 | 2429.5|
          19.750 |
| 13010.00 | 132.00| Subarea (UH) Added to Stream #2| 0.0 | 321.6|
17.000 |
         | 132.00 13305.00| Convex Routing:
                                              313.3|
                           Stream #2| 321.6
17.500 I
         311.61
17.833 |
| 132.00 | 133.00| Subarea (UH) Added to Stream #3| 0.0
                                             163.91
16.750 I
| 133.00 | 133.00 | Stream #3 Added to: Stream #2| 311.6 | 424.7|
17.667 I
          133.00
        133.00| Zero Out: Stream #3|
                                     163.9 0.01
| 133.00 | 133.00 | Stream #2 Added to: Stream #1 | 2429.5 | 2763.8 |
| 133.00 | 133.00| Zero Out:
                      Stream #2| 424.7 0.0|
| 133.00 | 134.00 | Convex Routing: Stream #1 | 2763.8 | 2761.5 |
          18.583 |
| 133.00 | 134.00| Subarea (UH) Added to Stream #2| 0.0 | 170.0|
16.417 |
         134.00| Stream #2 Added to: Stream #1| 2761.5 2798.1|
134.00
18.500 I
          | 134.00 | 134.00| Zero Out:
                           Stream #2| 170.0
                                              0.01
| 134.00 | 134.00| View:
                           Stream #1|
18.500 | 2607.80| 3 |
-----+
|Notes: 1 = BASIN MODEL VOLUME EXCEEDED; 2 = TIME IS AT END OF 5-MINUTE UNIT
3 = RUNOFF ESTIMATES DO NOT EXTEND PAST 2 DAYS AFTER THE PEAK DAY OF
THE DESIGN STORM
```

Date: 06/13/2019 File name: EV0534UF.RES Page 17

+-----

END OF FLOODSCx ROUTING ANALYSIS

F L O O D R O U T I N G A N A L Y S I S USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)

(c) Copyright 1989-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1264

Analysis prepared by:

Michael Baker International 5 Hutton Centre Drive Suite 500 Santa Ana, CA 92707

FLOW PROCESS FROM NODE 10100.00 TO NODE 119.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<

WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE *USER ENTERED "LAG" TIME = 3.308 HOURS

VALLEY (DEVELOPED) S-GRAPH SELECTED

MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.496; LOW LOSS FRACTION = 0.845 SPECIFIED PEAK RAINFALL DEPTHS(INCH):

5-MINUTE = 0.24; 30-MINUTE = 0.46; 1-HOUR = 0.64

3-HOUR = 1.19; 6-HOUR = 1.77; 24-HOUR = 3.13

*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394

3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933

11000000 11001 11002 11000 10 10000 10 0000 001

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>

THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO

ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).

ASSUMED REGULAR CHANNEL INFORMATION:

Date: 06/13/2019

BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00

UPSTREAM ELEVATION(FT) = 341.63; DOWNSTREAM ELEVATION(FT) = 312.40

File name: EV05137F.RES

Page 1

CHANNEL LENGTH (FT) = 3157.79 MANNING'S FACTOR = 0.030CONSTANT LOSS RATE(CFS) = 0.00 _____ FLOW PROCESS FROM NODE 810.00 TO NODE 12603.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<< ______ WATERSHED AREA = 171.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 0.134 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.290; LOW LOSS FRACTION = 0.598 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57 3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394 3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933************************* FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 7 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1 -----FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 6 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<> ______ FLOW PROCESS FROM NODE 12603.00 TO NODE 126.00 IS CODE = 5.2 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<-> _____ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00UPSTREAM ELEVATION(FT) = 312.40; DOWNSTREAM ELEVATION(FT) = 286.00 CHANNEL LENGTH(FT) = 3046.70 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00 ************************ FLOW PROCESS FROM NODE 920.00 TO NODE 126.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<

```
______
 WATERSHED AREA = 553.800 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.253 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.424; LOW LOSS FRACTION = 0.818
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
______
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 600.00 TO NODE 126.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 185.300 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.314 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.490; LOW LOSS FRACTION = 0.958
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 12720.50 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 286.00; DOWNSTREAM ELEVATION(FT) =
 CHANNEL LENGTH (FT) = 4077.05 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 430.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 315.200 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.271 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.243; LOW LOSS FRACTION = 0.472
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 413.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
_____
 WATERSHED AREA = 124.300 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.187 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.230; LOW LOSS FRACTION = 0.459
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
```

Date: 06/13/2019 File name: EV05137F.RES Page 3 Date: 06/13/2019 File name: EV05137F.RES Page 4

```
*************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
_____
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
______
************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12741.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 258.00; DOWNSTREAM ELEVATION(FT) = 247.00
 CHANNEL LENGTH (FT) = 2294.66 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
*****************
 FLOW PROCESS FROM NODE 320.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 675.500 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.351 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.209; LOW LOSS FRACTION = 0.415
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
***********************
```

File name: EV05137F.RES

Page 5

Date: 06/13/2019

```
>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #4<
______
 WATERSHED AREA = 195.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.433 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.405; LOW LOSS FRACTION = 0.770
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
***********************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
 >>>>STREAM NUMBER 4 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
 >>>>STREAM NUMBER 4 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 127.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.10 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 247.00; DOWNSTREAM ELEVATION(FT) =
                                            240.00
 CHANNEL LENGTH(FT) = 819.00 MANNING'S FACTOR = 0.030
```

FLOW PROCESS FROM NODE 390.00 TO NODE 12741.00 IS CODE = 1

```
CONSTANT LOSS RATE (CFS) = 0.00
*****************
 FLOW PROCESS FROM NODE 12710.00 TO NODE 127.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 944.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.429 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.494; LOW LOSS FRACTION = 0.958
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 240.00; DOWNSTREAM ELEVATION(FT) =
                                               215.00
 CHANNEL LENGTH (FT) = 3242.32
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
FLOW PROCESS FROM NODE 50220.00 TO NODE 50347.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<
```

File name: EV05137F.RES

Page 7

Date: 06/13/2019

```
WATERSHED AREA = 1120.700 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.453 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.362; LOW LOSS FRACTION = 0.671
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
FLOW PROCESS FROM NODE 50347.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 313.00; DOWNSTREAM ELEVATION(FT) =
                                                215.00
 CHANNEL LENGTH (FT) = 2700.00
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 129.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 215.00; DOWNSTREAM ELEVATION(FT) =
                                                213.00
 CHANNEL LENGTH(FT) = 1663.10 MANNING'S FACTOR = 0.030
```

```
CONSTANT LOSS RATE (CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 50400.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 420.000 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.220 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.461; LOW LOSS FRACTION = 0.889
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 214.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.257 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.211; LOW LOSS FRACTION = 0.441
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 213.00; DOWNSTREAM ELEVATION(FT) =
                                                     212.00
 CHANNEL LENGTH (FT) = 1389.52 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 13010.00 TO NODE 132.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 4924.400 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.986 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.406; LOW LOSS FRACTION = 0.789
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 13305.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 427.51; DOWNSTREAM ELEVATION(FT) =
                                                     315.00
 CHANNEL LENGTH (FT) = 9760.05
                           MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE (CFS) = 0.00
```

Page 10

Date: 06/13/2019 File name: EV05137F.RES Page 9 Date: 06/13/2019 File name: EV05137F.RES

```
______
*******************
 FLOW PROCESS FROM NODE 13305.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 315.00; DOWNSTREAM ELEVATION(FT) =
                                             212.00
 CHANNEL LENGTH (FT) = 6877.24 MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE(CFS) = 0.00
_____
****************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
______
 WATERSHED AREA = 1715.900 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.699 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.374; LOW LOSS FRACTION = 0.689
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
*********************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
_____
FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
______
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
*************************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<->
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 212.00; DOWNSTREAM ELEVATION(FT) = 173.00
 CHANNEL LENGTH (FT) = 6461.31 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 1691.600 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.353 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.406; LOW LOSS FRACTION = 0.767
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
*************************
```

Date: 06/13/2019 File name: EV05137F.RES Page 11 Date: 06/13/2019 File name: EV05137F.RES Page 12

```
FLOW PROCESS FROM NODE 13500.00 TO NODE 134.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 3859.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 2.180 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.473; LOW LOSS FRACTION = 0.843
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
*******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 137.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 173.00; DOWNSTREAM ELEVATION(FT) =
                                              133.00
 CHANNEL LENGTH (FT) = 6064.09
                         MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
_____
FLOW PROCESS FROM NODE 134.00 TO NODE 137.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 1191.900 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.438 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE (INCH/HOUR) = 0.395; LOW LOSS FRACTION = 0.716
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
```

Date: 06/13/2019

```
5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
5-MINUTE = 0.291; 30-MINUTE = 0.350; 1-HOUR = 0.394
  3-HOUR = 0.738; 6-HOUR = 0.886; 24-HOUR = 0.933
******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 6
>>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
*******************
FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 11
>>>>VIEW STREAM NUMBER 1 HYDROGRAPH<
______
_____
```

File name: EV05137F.RES Page 13 Date: 06/13/2019 File name: EV05137F.RES Page 14

1		* AES	FLOODSC	Cx E	PROGRAM RESU	LTS SUMMARY
INPUT FILEN	1	.37F.DAT]				
UPSTREAM D	OOWNSTREAM	++				DOWNSTREAM
NODE #	NODE #	HYDROLOGIC/HYDRAULIC T) FOOTNOTES				
10100.00	119.00	Subarea (UH) Added to	Stream	#1	0.0	2252.8
119.00	12603.00	Convex Routing:	Stream	#1	2252.8	2232.6
810.00	12603.00	Subarea (UH) Added to	Stream	#2	0.0	35.7
12603.00	12603.00	Stream #2 Added to:	Stream	#1	2232.6	2236.7
12603.00	12603.00	Zero Out:				
· +-	126.00	Convex Routing:				
920.00	126.00	Subarea (UH) Added to				
126.00 9.250	126.00	Stream #2 Added to:	Stream	#1	2229.4	2235.9
126.00	126.00	Zero Out:	Stream	#2	52.9	0.0
6.417	1	Subarea (UH) Added to				
126.00	126.00	-++ Stream #2 Added to:	Stream	#1	2235.9	2236.4
9.250 126.00	126.00	Zero Out:	Stream	#2	8.3	0.0
126.00	12720.50	Convex Routing:	Stream	#1	2236.4	2229.6
		Subarea (UH) Added to	Stream	#2	0.0	62.3
6.250 I	1	Subarea (UH) Added to				
		· ·-++		+		+
12720.50 6.250	12720.50	Stream #3 Added to:				
12720.50						0.0
0 222 1	i	Stream #2 Added to:				
12720.50	12720.50	Zero Out:	Stream	#2	87.0	0.0
Date	e: 06/13/2019	File name: EV05137F.	RES		Pag	ge 15

		Convex Routing:				
+-		++				
16.417	12741.00	Subarea (UH) Added to	Stream	#2	0.0	131.6
390.00 16.500	12741.00	Subarea (UH) Added to	Stream	#4	0.0	16.4
12741.00	12741.00	Stream #4 Added to:	Stream	#2	131.6	147.0
16.417 12741.00	12741.00	Stream #4 Added to: Zero Out:	Stream	#4	16.4	0.0
12741.00	12741.00	Stream #2 Added to:	Stream	#1	2243.0	2270.4
19.500 +	+-	l 		+-		+
		++ Zero Out:	Stream	#2	147.0	0.0
	1					
19.500	1	 Subarea (UH) Added to				
16.500 I		Stream #2 Added to:				
19.500		Zero Out:				
+-		++ Convex Routing:				
		Subarea (UH) Added to				
16.500	10000 001	Subalea (OH) Added to	ot	#41	110.7	110 01
16.583	12902.00	Convex Routing: Stream #2 Added to:	Stream	#4	119.7	110.2
10.333						
		Zero Out:				
•		 ++		+-		
12902.00 18.417		Convex Routing:	Stream	#1	2309.8	2307.1
50400.00 5.333	129.00	Subarea (UH) Added to	Stream	#2	0.0	31.9
129.00		Stream #2 Added to:	Stream	#1	2307.1	2311.0
18.417 129.00	129.00	Zero Out:	Stream	#2	31.9	0.0
		Subarea (UH) Added to	Stream	#2	0.0	46.3
•	+-	 		+-		+
		++ L VOLUME EXCEEDED; 2 =	TIME IS	S AT	END OF 5-MI	NUTE UNIT
		MATES DO NOT EXTEND PA	AST 2 DA	AYS A	AFTER THE PE.	AK DAY OF
+		 +				
	-					

* AES FLOODSCx PROGRAM RESULTS SUMMARY * |INPUT FILENAME: [EV05137F.DAT] Page: 2 of | |UPSTREAM DOWNSTREAM| | UPSTREAM DOWNSTREAM| TIME(2) TO | MAX. STORAGE| | NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) | PEAK (CFS) | PEAK (HR) | MODELED (AF) | FOOTNOTES | | 129.00 | 129.00| Stream #2 Added to: Stream #1| 2311.0 2321.8| 18.417 I | 129.00 | 129.00 | Zero Out: | Stream #2 | 46.3 0.01 2319.41 18.500 | | 13010.00 132.00| Subarea (UH) Added to Stream #2| 0.0 300.61 17.000 | | 132.00 | 13305.00| Convex Routing: 300.6 293.31 Stream #2| 17.583 I I 13305.00 133.00 | Convex Routing: Stream #2| 291.91 17.833 | | 132.00 | 133.00| Subarea (UH) Added to Stream #3| 0.0 | 153.7| 16.750 I | 133.00 133.00| Stream #3 Added to: Stream #2| 291.9 399.81 17.667 | 1 133.00| Zero Out: Stream #3| 153.7 0.0| 133.00 | 133.00 | 133.00| Stream #2 Added to: Stream #1| 2319.4 2645.01 | 133.00 | 133.00| Zero Out: Stream #2| 399.8 0.01 | 133.00 | 134.00 | Convex Routing: | Stream #1 | 2645.0 2643.3| 18.583 | | 133.00 134.00| Subarea (UH) Added to Stream #2| 0.0 156.71 16.417 | 134.00 2643.3 134.00| Stream #2 Added to: Stream #1| 2681.7| 18.250 I | 134.00 | 134.00| Zero Out: Stream #2| 156.7 0.01 18.083 I | 134.00 | 134.00| Stream #2 Added to: Stream #1| 2681.7 | 2826.5| 18.250 I | 134.00 | 134.00 | Zero Out: | Stream #2| 145.3 0.01 | 134.00 | 137.00 | Convex Routing: Stream #1 | 2826.5 2823.4| 18.417 Date: 06/13/2019 File name: EV05137F.RES Page 18

16.500	137.00 Subarea (UH) Adde			
	+	+		+-
137.00 18.333	137.00 Stream #2 Added t	o: Stream #1	2823.4	2865.2
137.00	137.00 Zero Out:	Stream #2	113.1	0.0
18.333 26	137.00 View: 583.79 3	Stream #1		2865.2
Notes: 1 = BAS	SIN MODEL VOLUME EXCEEDED; NOFF ESTIMATES DO NOT EXTE	ND PAST 2 DAYS AF		

END OF FLOODSCx ROUTING ANALYSIS

F L O O D R O U T I N G A N A L Y S I S USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)

(c) Copyright 1989-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1264

Analysis prepared by:

Michael Baker International 5 Hutton Centre Drive Suite 500 Santa Ana, CA 92707

* RANCHO MISSION VIEJO - CALIBRATED FREE DRAINING UH

* ULTIMATE CONDITION - REGIONAL NODE 138

* 5-YR EV JUNE 2019 ROKAMOTO

FILE NAME: EV05138F.DAT

TIME/DATE OF STUDY: 06:46 06/12/2019

** INPUT SUMMARY **

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<

WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE *USER ENTERED "LAG" TIME = 3.308 HOURS

VALLEY (DEVELOPED) S-GRAPH SELECTED

MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.496; LOW LOSS FRACTION = 0.845 SPECIFIED PEAK RAINFALL DEPTHS(INCH):

5-MINUTE = 0.24; 30-MINUTE = 0.46; 1-HOUR = 0.64

3-HOUR = 1.19; 6-HOUR = 1.77; 24-HOUR = 3.12

*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392

3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932

110.0 10.00000 1.001 1.002 110.002 120.000 10 0022 0.0

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<

THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).

ASSUMED REGULAR CHANNEL INFORMATION:

BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00

UPSTREAM ELEVATION(FT) = 341.63; DOWNSTREAM ELEVATION(FT) = 312.40

Date: 06/13/2019 File name: EV05138F.RES Page 1

CHANNEL LENGTH (FT) = 3157.79 MANNING'S FACTOR = 0.030CONSTANT LOSS RATE(CFS) = 0.00 _____ FLOW PROCESS FROM NODE 810.00 TO NODE 12603.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<< ______ WATERSHED AREA = 171.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 0.134 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.290; LOW LOSS FRACTION = 0.598 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57 3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392 3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932 ************************* FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 7 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1 -----FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 6 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<> ______ FLOW PROCESS FROM NODE 12603.00 TO NODE 126.00 IS CODE = 5.2 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<-> _____ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00UPSTREAM ELEVATION(FT) = 312.40; DOWNSTREAM ELEVATION(FT) = 286.00 CHANNEL LENGTH(FT) = 3046.70 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00 ************************ FLOW PROCESS FROM NODE 920.00 TO NODE 126.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<

```
______
 WATERSHED AREA = 553.800 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.253 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.424; LOW LOSS FRACTION = 0.818
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
______
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 600.00 TO NODE 126.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 185.300 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.314 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.490; LOW LOSS FRACTION = 0.958
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 12720.50 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 286.00; DOWNSTREAM ELEVATION(FT) =
 CHANNEL LENGTH (FT) = 4077.05 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 430.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 315.200 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.271 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.243; LOW LOSS FRACTION = 0.472
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 413.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
_____
 WATERSHED AREA = 124.300 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.187 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.230; LOW LOSS FRACTION = 0.459
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
```

Date: 06/13/2019 File name: EV05138F.RES Page 3 Date: 06/13/2019 File name: EV05138F.RES Page 4

```
*************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
_____
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
______
************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12741.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 258.00; DOWNSTREAM ELEVATION(FT) = 247.00
 CHANNEL LENGTH (FT) = 2294.66 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
*****************
 FLOW PROCESS FROM NODE 320.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 675.500 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.351 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.209; LOW LOSS FRACTION = 0.415
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
***********************
```

```
FLOW PROCESS FROM NODE 390.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #4<
______
 WATERSHED AREA = 195.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.433 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.405; LOW LOSS FRACTION = 0.770
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
***********************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
 >>>>STREAM NUMBER 4 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
 >>>>STREAM NUMBER 4 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 127.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.10 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 247.00; DOWNSTREAM ELEVATION(FT) =
                                            240.00
 CHANNEL LENGTH(FT) = 819.00 MANNING'S FACTOR = 0.030
```

Date: 06/13/2019 File name: EV05138F.RES Page 5 Date: 06/13/2019 File name: EV05138F.RES Page 6

```
CONSTANT LOSS RATE (CFS) = 0.00
*****************
 FLOW PROCESS FROM NODE 12710.00 TO NODE 127.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 944.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.429 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.494; LOW LOSS FRACTION = 0.958
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 240.00; DOWNSTREAM ELEVATION(FT) =
                                               215.00
 CHANNEL LENGTH (FT) = 3242.32
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
FLOW PROCESS FROM NODE 50220.00 TO NODE 50347.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<
```

File name: EV05138F.RES

Page 7

Date: 06/13/2019

```
WATERSHED AREA = 1120.700 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.453 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.362; LOW LOSS FRACTION = 0.671
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
FLOW PROCESS FROM NODE 50347.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 313.00; DOWNSTREAM ELEVATION(FT) =
                                                215.00
 CHANNEL LENGTH (FT) = 2700.00
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 129.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 215.00; DOWNSTREAM ELEVATION(FT) =
                                                213.00
 CHANNEL LENGTH(FT) = 1663.10 MANNING'S FACTOR = 0.030
```

```
CONSTANT LOSS RATE (CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 50400.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 420.000 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.220 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.461; LOW LOSS FRACTION = 0.889
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 214.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.257 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.211; LOW LOSS FRACTION = 0.441
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 213.00; DOWNSTREAM ELEVATION(FT) =
                                                     212.00
 CHANNEL LENGTH (FT) = 1389.52 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 13010.00 TO NODE 132.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 4924.400 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.986 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.406; LOW LOSS FRACTION = 0.789
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 13305.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <<->
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 427.51; DOWNSTREAM ELEVATION(FT) =
                                                     315.00
 CHANNEL LENGTH (FT) = 9760.05
                           MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE (CFS) = 0.00
```

File name: EV05138F.RES

Date: 06/13/2019

```
______
******************
 FLOW PROCESS FROM NODE 13305.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 315.00; DOWNSTREAM ELEVATION(FT) =
                                             212.00
 CHANNEL LENGTH (FT) = 6877.24 MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE(CFS) = 0.00
_____
****************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
______
 WATERSHED AREA = 1715.900 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.699 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.374; LOW LOSS FRACTION = 0.689
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
*********************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
_____
FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
*************************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<->
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 212.00; DOWNSTREAM ELEVATION(FT) = 173.00
 CHANNEL LENGTH (FT) = 6461.31 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 1691.600 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.353 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.406; LOW LOSS FRACTION = 0.767
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
*************************
```

Date: 06/13/2019 File name: EV05138F.RES Page 11 Date: 06/13/2019 File name: EV05138F.RES Page 12

```
FLOW PROCESS FROM NODE 13500.00 TO NODE 134.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 3859.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 2.180 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.473; LOW LOSS FRACTION = 0.843
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
***********************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 137.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 173.00; DOWNSTREAM ELEVATION(FT) = 133.00
 CHANNEL LENGTH (FT) = 6064.09
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
_____
FLOW PROCESS FROM NODE 134.00 TO NODE 137.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 1191.900 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.438 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.395; LOW LOSS FRACTION = 0.716
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
```

```
3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 138.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 133.00; DOWNSTREAM ELEVATION(FT) =
                                                119.70
 CHANNEL LENGTH(FT) = 4643.67 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
______
*******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 138.00 IS CODE = 1
______
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 1303.500 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.607 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.445; LOW LOSS FRACTION = 0.797
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.19
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.287; 30-MINUTE = 0.348; 1-HOUR = 0.392
  3-HOUR = 0.734; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 138.00 TO NODE 138.00 IS CODE = 7
```

5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57

Date: 06/13/2019 File name: EV05138F.RES Page 13 Date: 06/13/2019 File name: EV05138F.RES Page 14

>>>>STREAM	NUMBER 2 ADDE	D TO STREAM NUMBE	R 1<<<<	

		RED AND SET TO ZE		·
	NUMBER 2 CLEA	HED AND SET TO BE		.======
**********			*****	
			138.00 IS CODE = 11	
>>>>VIEW ST	FREAM NUMBER 1	HYDROGRAPH<		

```
* AES FLOODSCx PROGRAM RESULTS SUMMARY *
|INPUT FILENAME: [EV05138F.DAT ]
Page: 1 of
|UPSTREAM DOWNSTREAM|
                                   | UPSTREAM DOWNSTREAM|
TIME(2) TO | MAX. STORAGE|
| NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) | PEAK (CFS) |
PEAK (HR) | MODELED (AF) | FOOTNOTES |
19.333 |
         | 119.00 12603.00| Convex Routing: Stream #1| 2232.3 2213.1|
19.417 |
| 810.00 | 12603.00| Subarea (UH) Added to Stream #2| 0.0
                                              35.21
16.167 |
         | 12603.00 | 12603.00| Stream #2 Added to: Stream #1| 2213.1
                                               2217.2|
| 12603.00 | 12603.00| Zero Out:
                            Stream #2| 35.2
                                               0.01
 | 12603.00 | 126.00 | Convex Routing: | Stream #1 | 2217.2
                                               2211.31
19.250
920.00 126.00| Subarea (UH) Added to Stream #2| 0.0
                                               51.71
16.333 |
          | 126.00 | 126.00| Stream #2 Added to: Stream #1| 2211.3
                                               2217.7|
19.250 I
          126.00| Zero Out: Stream #2| 51.7
1 126.00
                                              0.01
| 600.00 | 126.00| Subarea (UH) Added to Stream #2| 0.0
                                               8.01
16.417 |
| 126.00 | 126.00| Stream #2 Added to: Stream #1| 2217.7
                                               2218.2|
19.250 |
          | 126.00 | 126.00| Zero Out:
                            Stream #2| 8.0
                                               0.01
               | 126.00 | 12720.50| Convex Routing: Stream #1| 2218.2
                                               2211.61
         | 430.00 | 12720.50| Subarea (UH) Added to Stream #2| 0.0
                                                61.6
16.333 I
| 413.00 12720.50| Subarea (UH) Added to Stream #3|
                                                29.31
16.250 I
| 12720.50 | 12720.50| Stream #3 Added to: Stream #2| 61.6
                                                86.11
         1
16.250 I
| 12720.50 | 12720.50 | Zero Out: Stream #3| 29.3
                                               0.01
| 12720.50 | 12720.50| Stream #2 Added to: Stream #1|
                                       2211.6
                                               2226.21
        19.333 |
| 12720.50 | 12720.50 | Zero Out: | Stream #2|
                                      86.1
                                               0.0
Date: 06/13/2019 File name: EV05138F.RES
                                        Page 16
```

		Convex Routing:				
320.00 16.417	12741.00	++ Subarea (UH) Added to	Stream	#2	0.0	130.3
390.00 16.500	12741.00	Subarea (UH) Added to	Stream	#4	0.0	16.1
1 12741.00	12741.001	Stream #4 Added to:	Stream	#2	130.3	145.5
12741.00	12741.00	Zero Out:	Stream	#4	16.1	0.0
12741.00	12741.00	Stream #2 Added to:	Stream	#1	2224.8	2252.1
+-		++ Zero Out:				
		Convex Routing:				
19.500	127.00	Subarea (UH) Added to	C+room	#21	0.0	2232.01
6.500	127.00	Stream #2 Added to:	Stredill	#4	2252.0	22.01
9.500						
+	 +-	Zero Out:				
	12902.00	++ Convex Routing:	Stream	#1	2254.5	2253.6
50220.00	50347.00	Subarea (UH) Added to	Stream	#2	0.0	118.1
50347.00	12902.00	Convex Routing:				
12902.00 8.333		Stream #2 Added to:	Stream	#1	2253.6	2296.4
12902.00	12902.00	Zero Out:				
+-		++ Convex Routing:				
8 417 I	1	Subarea (UH) Added to				
6.333	129.001	Stream #2 Added to:	Stream	#1	2293.6	2297.51
8.417						
210.00	129.00	 Subarea (UH) Added to	Stream	#2	0.0	45.8
Notes: 1 = INTERVAL	BASIN MODE	VOLUME EXCEEDED; 2 =	TIME IS	S AT ENI	D OF 5-MINU	TE UNIT

+		+			DOCDAM DEGI	
 INPUT FILEN Page: 2 of	1	138F.DAT]				LTS SUMMARY *
		+				DOWNSTREAM
NODE #	NODE #	GE HYDROLOGIC/HYDRAULIC F) FOOTNOTES				
129.00	129.00	++ Stream #2 Added to:				
18.417 129.00	129.00	Zero Out:	Stream	#2	45.8	0.0
	133.00	Convex Routing:	Stream	#1	2308.3	2305.9
	132.00	Subarea (UH) Added to	Stream	#2	0.0	297.0
	13305.00	Convex Routing:				
		 			+	+-
13305.00	133.00	Convex Routing:	Stream	#2	289.9	288.5
		Subarea (UH) Added to	Stream	#3	0.0	151.9
		Stream #3 Added to:	Stream	#2	288.5	396.3
17.667 133.00		Zero Out:	Stream	#3	151.9	0.0
18.417	1	Stream #2 Added to:				2630.4
•	•	 ++			+	
133.00		Zero Out:	Stream	#2	396.3	0.0
133.00 18.583		Convex Routing:	Stream	#1	2630.4	2628.8
	134.00	Subarea (UH) Added to	Stream	#2	0.0	153.9
	134.00	Stream #2 Added to:	Stream	#1	2628.8	2667.9
134.00	134.00					0.0
		++			'	·
18.083		Subarea (UH) Added to				
18.250		Stream #2 Added to:				
134.00	I				144.0	
134.00 18.417	137.00	Convex Routing:	Stream	#1	2811.4	2808.4
Dat	e: 06/13/2019	File name: EV05138F.	RES		Pag	ge 19

134.00 16.500		Subarea (UH)					
+-							
137.00				Stream	#1	2808.4	2850.4
18.333							
137.00	137.00	Zero Out:		Stream	#2	111.4	0.0
1 127 00	120 001	Convoy Bouti	n~•	Ctroom	#1 I	2050 4	2017 61
137.00 18.500	130.001	Convex Routi	ng:	Stream	#1	2030.4	2047.01
137.00	138.00	Subarea (UH)	Added to	Stream	#2	0.0	82.2
16.667		1					
138.00	138.00	Stream #2 Ad	ded to:	Stream	#1	2847.6	2882.1
18.500							
+					+		+-
		Zero Out:		Stream	#21	82.2	0.01
	1				— 1		,
138.00	138.00	View:		Stream	#1		2882.1
18.500							
					+		+-
		·				0 5 147344	
Notes: 1 =	BASIN MODEI	J VOLUME EXCE	EDED; Z =	TIME 18	AT ENI	OF 5-MINUT	E UNIT
	RINOFF EST	MATES DO NOT	EXTEND PZ	מת 2 שמע	VS AFTI	ER THE DEAK	DAY OF
THE DESIGN ST		LILLIED DO NOI	 	LUI Z DE	110 111 11	TILL LUAIN	D111 O1
+							

END OF FLOODSCX ROUTING ANALYSIS

F L O O D R O U T I N G A N A L Y S I S USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)

(c) Copyright 1989-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1264

Analysis prepared by:

Michael Baker International 5 Hutton Centre Drive Suite 500 Santa Ana, CA 92707

* ULTIMATE CONDITION - REGIONAL NODE 139

* 5-YR EV JUNE 2019 ROKAMOTO

FILE NAME: EV05139F.DAT

TIME/DATE OF STUDY: 06:47 06/12/2019

** INPUT SUMMARY **

FLOW PROCESS FROM NODE 10100.00 TO NODE 119.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<

WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE

*USER ENTERED "LAG" TIME = 3.308 HOURS

VALLEY (DEVELOPED) S-GRAPH SELECTED

MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.496; LOW LOSS FRACTION = 0.845

SPECIFIED PEAK RAINFALL DEPTHS(INCH):

5-MINUTE = 0.24; 30-MINUTE = 0.45; 1-HOUR = 0.64

3-HOUR = 1.18; 6-HOUR = 1.76; 24-HOUR = 3.11

*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391

3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932

FLOW PROCESS FROM NODE 119.00 TO NODE 12003.00 TS CODE = 5.2

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>

THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology,

Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).

ASSUMED REGULAR CHANNEL INFORMATION:

Date: 06/13/2019

BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00

UPSTREAM ELEVATION(FT) = 341.63; DOWNSTREAM ELEVATION(FT) = 312.40

File name: EV05139F.RES Page 1

CHANNEL LENGTH (FT) = 3157.79 MANNING'S FACTOR = 0.030CONSTANT LOSS RATE(CFS) = 0.00 _____ FLOW PROCESS FROM NODE 810.00 TO NODE 12603.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<< ______ WATERSHED AREA = 171.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 0.134 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.290; LOW LOSS FRACTION = 0.598 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57 3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.18 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391 3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932 ************************* FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 7 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1 -----FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 6 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<> ______ FLOW PROCESS FROM NODE 12603.00 TO NODE 126.00 IS CODE = 5.2 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<-> _____ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00UPSTREAM ELEVATION(FT) = 312.40; DOWNSTREAM ELEVATION(FT) = 286.00 CHANNEL LENGTH(FT) = 3046.70 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00 ************************ FLOW PROCESS FROM NODE 920.00 TO NODE 126.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<

```
______
 WATERSHED AREA = 553.800 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.253 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.424; LOW LOSS FRACTION = 0.818
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.18
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
______
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 600.00 TO NODE 126.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 185.300 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.314 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.490; LOW LOSS FRACTION = 0.958
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.18
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 12720.50 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 286.00; DOWNSTREAM ELEVATION(FT) =
 CHANNEL LENGTH (FT) = 4077.05 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 430.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 315.200 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.271 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.243; LOW LOSS FRACTION = 0.472
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.18
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 413.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
_____
 WATERSHED AREA = 124.300 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.187 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.230; LOW LOSS FRACTION = 0.459
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.18
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
```

Date: 06/13/2019 File name: EV05139F.RES Page 3 Date: 06/13/2019 File name: EV05139F.RES Page 4

```
*************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
_____
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
______
************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12741.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 258.00; DOWNSTREAM ELEVATION(FT) = 247.00
 CHANNEL LENGTH (FT) = 2294.66 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 320.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 675.500 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.351 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.209; LOW LOSS FRACTION = 0.415
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.18
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
************************
```

```
FLOW PROCESS FROM NODE 390.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #4<
______
 WATERSHED AREA = 195.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.433 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.405; LOW LOSS FRACTION = 0.770
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.18
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
***********************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
 >>>>STREAM NUMBER 4 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
 >>>>STREAM NUMBER 4 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 127.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.10 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 247.00; DOWNSTREAM ELEVATION(FT) =
                                            240.00
 CHANNEL LENGTH(FT) = 819.00 MANNING'S FACTOR = 0.030
```

Date: 06/13/2019 File name: EV05139F.RES Page 5 Date: 06/13/2019 File name: EV05139F.RES Page 6

```
CONSTANT LOSS RATE (CFS) = 0.00
*****************
 FLOW PROCESS FROM NODE 12710.00 TO NODE 127.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 944.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.429 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.494; LOW LOSS FRACTION = 0.958
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.18
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 240.00; DOWNSTREAM ELEVATION(FT) =
                                               215.00
 CHANNEL LENGTH (FT) = 3242.32
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
FLOW PROCESS FROM NODE 50220.00 TO NODE 50347.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<
```

File name: EV05139F.RES

Page 7

Date: 06/13/2019

```
WATERSHED AREA = 1120.700 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.453 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.362; LOW LOSS FRACTION = 0.671
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.18
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
FLOW PROCESS FROM NODE 50347.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 313.00; DOWNSTREAM ELEVATION(FT) =
                                                215.00
 CHANNEL LENGTH (FT) = 2700.00
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 129.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 215.00; DOWNSTREAM ELEVATION(FT) =
                                                213.00
 CHANNEL LENGTH(FT) = 1663.10 MANNING'S FACTOR = 0.030
```

```
CONSTANT LOSS RATE (CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 50400.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 420.000 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.220 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.461; LOW LOSS FRACTION = 0.889
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.18
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 214.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.257 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.211; LOW LOSS FRACTION = 0.441
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.18
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
*************************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 213.00; DOWNSTREAM ELEVATION(FT) =
                                                    212.00
 CHANNEL LENGTH (FT) = 1389.52 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 13010.00 TO NODE 132.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 4924.400 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.986 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.406; LOW LOSS FRACTION = 0.789
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.18
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 13305.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <<->
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 427.51; DOWNSTREAM ELEVATION(FT) =
                                                    315.00
 CHANNEL LENGTH (FT) = 9760.05
                           MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE (CFS) = 0.00
```

Date: 06/13/2019 File name: EV05139F.RES Page 9 Date: 06/13/2019 File name: EV05139F.RES Page 10

```
______
*******************
 FLOW PROCESS FROM NODE 13305.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD <>>>
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 315.00; DOWNSTREAM ELEVATION(FT) =
                                             212.00
 CHANNEL LENGTH (FT) = 6877.24 MANNING'S FACTOR = 0.040
 CONSTANT LOSS RATE(CFS) = 0.00
_____
****************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
______
 WATERSHED AREA = 1715.900 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.699 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.374; LOW LOSS FRACTION = 0.689
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.18
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
*********************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
_____
FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
______
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
*************************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<->
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 212.00; DOWNSTREAM ELEVATION(FT) = 173.00
 CHANNEL LENGTH (FT) = 6461.31 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
-----
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 1691.600 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.353 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.406; LOW LOSS FRACTION = 0.767
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.18
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
*************************
```

Date: 06/13/2019 File name: EV05139F.RES Page 11 Date: 06/13/2019 File name: EV05139F.RES Page 12

```
FLOW PROCESS FROM NODE 13500.00 TO NODE 134.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 3859.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 2.180 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.473; LOW LOSS FRACTION = 0.843
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.18
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
***********************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 137.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 173.00; DOWNSTREAM ELEVATION(FT) = 133.00
 CHANNEL LENGTH (FT) = 6064.09
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
_____
FLOW PROCESS FROM NODE 134.00 TO NODE 137.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 1191.900 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.438 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.395; LOW LOSS FRACTION = 0.716
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
```

```
5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.18
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 138.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 0.01 CHANNEL Z = 3.00
 UPSTREAM ELEVATION(FT) = 133.00; DOWNSTREAM ELEVATION(FT) =
                                                119.70
 CHANNEL LENGTH(FT) = 4643.67 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE (CFS) = 0.00
______
*******************
 FLOW PROCESS FROM NODE 137.00 TO NODE 138.00 IS CODE = 1
______
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<
______
 WATERSHED AREA = 1303.500 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.607 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.445; LOW LOSS FRACTION = 0.797
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57
  3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.18
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391
  3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932
*******************
 FLOW PROCESS FROM NODE 138.00 TO NODE 138.00 IS CODE = 7
```

Date: 06/13/2019 File name: EV05139F.RES Page 13 Date: 06/13/2019 File name: EV05139F.RES Page 14

>>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1

>>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD
THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH(FT) = 0.01 CHANNEL Z = 3.00 UPSTREAM ELEVATION(FT) = 119.70; DOWNSTREAM ELEVATION(FT) = 100.00 CHANNEL LENGTH(FT) = 3107.78 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00

WATERSHED AREA = 428.000 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE *USER ENTERED "LAG" TIME = 0.255 HOURS VALLEY(DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.345; LOW LOSS FRACTION = 0.606 SPECIFIED PEAK RAINFALL DEPTHS(INCH): 5-MINUTE = 0.19; 30-MINUTE = 0.42; 1-HOUR = 0.57 3-HOUR = 0.95; 6-HOUR = 1.31; 24-HOUR = 2.18 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.286; 30-MINUTE = 0.348; 1-HOUR = 0.391 3-HOUR = 0.733; 6-HOUR = 0.885; 24-HOUR = 0.932

Date: 06/13/2019 File name: EV05139F.RES

Page 15

FLOW PROCESS FROM NODE 139.00 TO NODE 139.00 IS CODE = 11
>>>>VIEW STREAM NUMBER 1 HYDROGRAPH<>>>>

I		* AES	FLOODSO	Cx 1	PROGRAM RESU	LTS SUMMARY
age: 1 of	1	139F.DAT]				
		++			UPSTREAM	
IME(2) TO NODE #	MAX. STORAG	GE HYDROLOGIC/HYDRAULIC F) FOOTNOTES	PROCESS		PEAK (CFS)	PEAK (CFS)
		+ ++			+	
10100.00 9.333	119.00	Subarea (UH) Added to	Stream	#1	0.0	2228.4
119.00	12603.00	Convex Routing:	Stream	#1	2228.4	2208.8
810.00	12603.00	Subarea (UH) Added to	Stream	#2	0.0	35.0
	12603.00	Stream #2 Added to:	Stream	#1	2208.8	2212.9
	12603.00	Zero Out:				
+		++			•	
9 25N I	1	Convex Routing:				
		Subarea (UH) Added to				
126.00 9.250	126.00	Stream #2 Added to:	Stream	#1	2204.6	2211.0
126.00	126.00	Zero Out:	Stream	#2	51.3	0.0
		Subarea (UH) Added to				
+		++				
9.250	120.00	Stream #2 Added to: Zero Out:	Stream	#1	2211.0	2211.5
9.417	1	Convex Routing:				
6.333		Subarea (UH) Added to				
6.250 I	1	Subarea (UH) Added to				
12720.50	12720.50	++ Stream #3 Added to:	Stream	#2	61.3	85.8
6.250 12720.50		Zero Out:	Stream	#3	29.2	0.0
			Stream	#1	2205.0	2219.2
9.417 12720.50	12720.50	Zero Out:	Stream	#2	85.8	0.0

		Convex Routing:				2218.4
		++ Subarea (UH) Added to				129.9
16.417	1	Subarea (UH) Added to				
16.500		Stream #4 Added to:				
16.417						
19.500		 Stream #2 Added to:			2218.4	2245.4
		+ Zero Out:			145.0	0.0
12741.00	127.00	Convex Routing:	Stream	#1	2245.4	2245.2
	127.00	Subarea (UH) Added to	Stream	#2	0.0	32.2
		Stream #2 Added to:	Stream	#1	2245.2	2247.7
1	1	Zero Out:				
+-		Convex Routing:				
	50347.00	Subarea (UH) Added to	Stream	#2	0.0	117.6
		Convex Routing:	Stream	#2	117.6	116.2
	12902.00	Stream #2 Added to:	Stream	#1	2246.9	2288.5
12902.00	12902.00	Zero Out:				0.0
·		++ Convex Routing:	Stream	#1	2288.5	2285.81
18.417	1	 Subarea (UH) Added to				
16.333 129.00	 129.00	Stream #2 Added to:	Stream	#1	2285.8	2289.6
18.417 129.00	 129.00	Zero Out:	Stream	#2	30.6	0.0
16.333	1	Subarea (UH) Added to			0.0	
Notes: 1 = INTERVAL 3 = THE DESIGN ST	BASIN MODEI RUNOFF ESTI	VOLUME EXCEEDED; 2 =	TIME IS	S AT I	END OF 5-MIN	UTE UNIT
		+				

```
* AES FLOODSCx PROGRAM RESULTS SUMMARY *
|INPUT FILENAME: [EV05139F.DAT ]
Page: 2 of |
|UPSTREAM DOWNSTREAM|
                                 | UPSTREAM DOWNSTREAM|
TIME(2) TO | MAX. STORAGE|
| NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) | PEAK (CFS) |
PEAK (HR) | MODELED (AF) | FOOTNOTES |
| 129.00 | 129.00| Stream #2 Added to: Stream #1| 2289.6
                                            2300.81
18.333 I
         1
| 129.00 | 129.00 | Zero Out: | Stream #2| 45.6
                                            0.01
2298.01
         18.500 |
| 13010.00
        132.00| Subarea (UH) Added to Stream #2| 0.0
                                          295.81
17.000 |
         | 132.00 | 13305.00| Convex Routing:
                                     295.8
                                             288.91
                          Stream #2|
17.583 I
         I 13305.00
        133.00 | Convex Routing: Stream #2|
                                     288.9
                                            287.51
         17.833 |
| 132.00 | 133.00| Subarea (UH) Added to Stream #3| 0.0
                                           151.31
16.750 I
         1
| 133.00
         133.00| Stream #3 Added to: Stream #2|
                                    287.5 395.1
17.667 |
         1
        133.00| Zero Out: Stream #3|
                                    151.3 0.0|
133.00
| 133.00 | 133.00| Stream #2 Added to: Stream #1|
                                    2298.0
                                            2622.41
| 133.00 | 133.00| Zero Out:
                      Stream #2|
                                    395.1
                                            0.01
| 133.00 | 134.00 | Convex Routing: | Stream #1 | 2622.4
                                            2620.81
         18.583 |
| 133.00
         134.00| Subarea (UH) Added to Stream #2| 0.0
                                           153.01
16.417 |
         134.00
                                    2620.8
         134.00| Stream #2 Added to: Stream #1|
                                            2660.41
18.250 I
          153.0
                                            0.01
| 134.00 | 134.00| Zero Out:
                           Stream #2|
18.083 I
         | 134.00 | 134.00| Stream #2 Added to: Stream #1| 2660.4 | 2803.3|
         18.250 I
| 134.00 | 134.00 | Zero Out: | Stream #2|
                                    143.5
                                            0.01
| 134.00 | 137.00 | Convex Routing: Stream #1 | 2803.3
                                            2800.4|
18.417
      Date: 06/13/2019 File name: EV05139F.RES Page 20
```

Date: 06/13/2019 File name: EV05139F.RES Page 19

16.500	1	Subarea (UH) A					·
	137.00	+		Stream	#1	2800.4	2842.5
		Zero Out:		Stream	#2	110.8	0.0
137.00 18.500	138.00	Convex Routing	g:	Stream	#1	2842.5	2839.7
137.00		Subarea (UH) A	Added to	Stream	#2	0.0	81.7
138.00		Stream #2 Adde					
					+		+-
		Zero Out:		Stream	#2	81.7	0.0
138.00	139.00	Convex Routing	g:	Stream	#1	2874.2	2873.3
· ·		Subarea (UH) A	Added to	Stream	#2	0.0	63.8
	139.00	Stream #2 Adde	ed to:	Stream	#1	2873.3	2886.2
139.00	139.00	Zero Out:					
					+		+-
18.583	2739.88	View:					
					+		+-
Notes: 1 = BASIN MODEL VOLUME EXCEEDED; 2 = TIME IS AT END OF 5-MINUTE UNIT							
\mid 3 = RUNOFF ESTIMATES DO NOT EXTEND PAST 2 DAYS AFTER THE PEAK DAY OF THE DESIGN STORM \mid							
			+				

END OF FLOODSCx ROUTING ANALYSIS

Date: 06/13/2019 File name: EV05139F.RES Page 21

F L O O D R O U T I N G A N A L Y S I S USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)

(c) Copyright 1989-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1264

Analysis prepared by:

Michael Baker International 5 Hutton Centre Drive Suite 500 Santa Ana, CA 92707

* RANCHO MISSION VIEJO - CALIBRATED FREE DRAINING UH

* ULTIMATE CONDITION - REGIONAL NODE 127

* 10-YR EV JUNE 2019 ROKAMOTO

FILE NAME: EV10127F.DAT

TIME/DATE OF STUDY: 06:42 06/12/2019

** INPUT SUMMARY **

FLOW PROCESS FROM NODE 10100.00 TO NODE 119.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<

WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE

WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SQUARE-M.
*USER ENTERED "LAG" TIME = 2.320 HOURS

VALLEY (DEVELOPED) S-GRAPH SELECTED

MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.298; LOW LOSS FRACTION = 0.746

SPECIFIED PEAK RAINFALL DEPTHS (INCH):

5-MINUTE = 0.33; 30-MINUTE = 0.63; 1-HOUR = 0.88

3-HOUR = 1.66; 6-HOUR = 2.46; 24-HOUR = 4.34

*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425

3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<

THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).

BASEWIDTH (FT) = 200.00 CHANNEL Z = 5.00

ASSUMED REGULAR CHANNEL INFORMATION:

Date: 06/12/2019

UPSTREAM ELEVATION(FT) = 341.63; DOWNSTREAM ELEVATION(FT) = 312.40

File name: EV10127F.RES Page 1

CHANNEL LENGTH (FT) = 3157.79 MANNING'S FACTOR = 0.030CONSTANT LOSS RATE(CFS) = 0.00 _____ FLOW PROCESS FROM NODE 810.00 TO NODE 12603.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<< ______ WATERSHED AREA = 171.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 0.128 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.174; LOW LOSS FRACTION = 0.548 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.26; 30-MINUTE = 0.59; 1-HOUR = 0.78 3-HOUR = 1.32; 6-HOUR = 1.82; 24-HOUR = 3.04 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425 3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941 ************************* FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 7 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<< -----FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 6 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<> ______ ****************** FLOW PROCESS FROM NODE 12603.00 TO NODE 126.00 IS CODE = 5.2 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<-> _____ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH (FT) = 200.00 CHANNEL Z = 5.00UPSTREAM ELEVATION(FT) = 312.40; DOWNSTREAM ELEVATION(FT) = 286.00 CHANNEL LENGTH(FT) = 3046.70 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00 ******************* FLOW PROCESS FROM NODE 920.00 TO NODE 126.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<

Date: 06/12/2019 File name: EV10127F.RES Page 2

```
______
 WATERSHED AREA = 553.800 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.231 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.254; LOW LOSS FRACTION = 0.750
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.26; 30-MINUTE = 0.59; 1-HOUR = 0.78
  3-HOUR = 1.32; 6-HOUR = 1.82; 24-HOUR = 3.04
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
______
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
*****************
 FLOW PROCESS FROM NODE 600.00 TO NODE 126.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 185.300 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.318 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.294; LOW LOSS FRACTION = 0.920
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.26; 30-MINUTE = 0.59; 1-HOUR = 0.78
  3-HOUR = 1.32; 6-HOUR = 1.82; 24-HOUR = 3.04
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
*****************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 12720.50 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 200.00 CHANNEL Z = 5.00
 UPSTREAM ELEVATION(FT) = 286.00; DOWNSTREAM ELEVATION(FT) =
 CHANNEL LENGTH (FT) = 4077.05 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
*******************
 FLOW PROCESS FROM NODE 430.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 315.200 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.252 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.146; LOW LOSS FRACTION = 0.406
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.26; 30-MINUTE = 0.59; 1-HOUR = 0.78
  3-HOUR = 1.32; 6-HOUR = 1.82; 24-HOUR = 3.04
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
*******************
 FLOW PROCESS FROM NODE 413.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
_____
 WATERSHED AREA = 124.300 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.175 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.138; LOW LOSS FRACTION = 0.400
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.26; 30-MINUTE = 0.59; 1-HOUR = 0.78
  3-HOUR = 1.32; 6-HOUR = 1.82; 24-HOUR = 3.04
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
```

Date: 06/12/2019 File name: EV10127F.RES Page 3 Date: 06/12/2019 File name: EV10127F.RES Page 4

```
*************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
_____
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
______
************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12741.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 200.00 CHANNEL Z = 5.00
 UPSTREAM ELEVATION(FT) = 258.00; DOWNSTREAM ELEVATION(FT) = 247.00
 CHANNEL LENGTH (FT) = 2294.66 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
*****************
 FLOW PROCESS FROM NODE 320.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 675.500 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.326 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.126; LOW LOSS FRACTION = 0.354
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.26; 30-MINUTE = 0.59; 1-HOUR = 0.78
  3-HOUR = 1.32; 6-HOUR = 1.82; 24-HOUR = 3.04
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
*******************
```

```
FLOW PROCESS FROM NODE 390.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #4<
______
 WATERSHED AREA = 195.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.381 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.243; LOW LOSS FRACTION = 0.702
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.26; 30-MINUTE = 0.59; 1-HOUR = 0.78
  3-HOUR = 1.32; 6-HOUR = 1.82; 24-HOUR = 3.04
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
***********************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
 >>>>STREAM NUMBER 4 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
 >>>>STREAM NUMBER 4 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 127.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 200.00 CHANNEL Z = 5.00
 UPSTREAM ELEVATION(FT) = 247.00; DOWNSTREAM ELEVATION(FT) =
                                            240.00
 CHANNEL LENGTH(FT) = 819.00 MANNING'S FACTOR = 0.030
```

Date: 06/12/2019 File name: EV10127F.RES Page 5 Date: 06/12/2019 File name: EV10127F.RES Page 6

```
CONSTANT LOSS RATE (CFS) = 0.00
******************
 FLOW PROCESS FROM NODE 12710.00 TO NODE 127.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 944.100 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.446 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.296; LOW LOSS FRACTION = 0.905
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.26; 30-MINUTE = 0.59; 1-HOUR = 0.78
  3-HOUR = 1.32; 6-HOUR = 1.82; 24-HOUR = 3.04
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.333; 30-MINUTE = 0.385; 1-HOUR = 0.425
  3-HOUR = 0.775; 6-HOUR = 0.899; 24-HOUR = 0.941
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 11
 >>>>VIEW STREAM NUMBER 1 HYDROGRAPH<
```

```
* AES FLOODSCx PROGRAM RESULTS SUMMARY *
|INPUT FILENAME: [EV10127F.DAT ]
Page: 1 of
|UPSTREAM DOWNSTREAM|
                                 | UPSTREAM DOWNSTREAM|
TIME(2) TO | MAX. STORAGE|
| NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) | PEAK (CFS) |
PEAK (HR) | MODELED (AF) | FOOTNOTES |
+------
7099.71
18.333 I
         | 119.00 12603.00| Convex Routing: Stream #1| 7099.7
                                           7079.3|
18.417 |
| 810.00 | 12603.00| Subarea (UH) Added to Stream #2|
                                           85.31
16.167 |
| 12603.00 | 12603.00 | Stream #2 Added to: Stream #1 | 7079.3
                                            7087.41
| 12603.00 | 12603.00| Zero Out:
                          Stream #2|
                                   85.3
                                            0.01
| 12603.00 | 126.00 | Convex Routing: | Stream #1 | 7087.4
                                            7067.91
         18.500 |
920.00 126.00| Subarea (UH) Added to Stream #2| 0.0
                                           168.91
16.333 |
         | 126.00 | 126.00| Stream #2 Added to: Stream #1| 7067.9
                                            7083.01
          18.500 I
| 126.00 | 126.00| Zero Out: Stream #2| 168.9
                                            0.01
| 600.00 | 126.00| Subarea (UH) Added to Stream #2| 0.0
                                            38.91
16.417 |
+-----
| 126.00 | 126.00| Stream #2 Added to: Stream #1| 7083.0
                                            7084.81
18.500 I
         | 126.00 | 126.00| Zero Out:
                          Stream #2| 38.9
                                            0.01
        | 126.00 | 12720.50 | Convex Routing: | Stream #1 | 7084.8
                                            7054.51
18.583
| 430.00 | 12720.50| Subarea (UH) Added to Stream #2| 0.0
                                            127.2|
16.333 I
| 413.00 12720.50| Subarea (UH) Added to Stream #3|
                                             61.1
16.250 I
        _______
| 12720.50 | 12720.50 | Stream #3 Added to: Stream #2 | 127.2
                                          180.81
16.250
| 12720.50 | 12720.50| Zero Out:
                          Stream #3|
                                   61.1
                                            0.01
             | 12720.50 | 12720.50| Stream #2 Added to: Stream #1|
                                    7054.5
                                            7082.01
18.583 |
        | 12720.50 | 12720.50 | Zero Out: | Stream #2| 180.8
                                             0.0
Date: 06/12/2019 File name: EV10127F.RES
                                       Page 8
```

18.667		Convex Routing:				
		 ++		+		+-
•		Subarea (UH) Added to	Stream	#2	0.0	249.7
390.00 16.417	12741.00	Subarea (UH) Added to	Stream	#4	0.0	47.0
12741.00 16.417	12741.00	Stream #4 Added to:	Stream	#2	249.7	296.7
12741.00	12741.00	Zero Out:	Stream	#4	47.0	0.0
18.667	1	Stream #2 Added to:				
		 ++		+		+-
•		Zero Out:	Stream	#2	296.7	0.0
12741.00 18.667	127.00	Convex Routing:	Stream	#1	7118.4	7110.7
12710.00 16.500	1	Subarea (UH) Added to				
127.00 18.667	127.00	Stream #2 Added to:	Stream	#1	7110.7	7121.8
	1	Zero Out:				
				+		
127.00 18.667	127.00		Stream	#1		7121.8
+	+			+		
Notes: 1 = BASIN MODEL VOLUME EXCEEDED; 2 = TIME IS AT END OF 5-MINUTE UNIT						
INTERVAL 3 = RUNOFF ESTIMATES DO NOT EXTEND PAST 2 DAYS AFTER THE PEAK DAY OF THE DESIGN STORM						
•						
		+				

END OF FLOODSCx ROUTING ANALYSIS

Date: 06/12/2019 File name: EV10127F.RES Page 9

F L O O D R O U T I N G A N A L Y S I S USING COUNTY HYDROLOGY MANUAL OF ORANGE (1986)

(c) Copyright 1989-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1264

Analysis prepared by:

Michael Baker International 5 Hutton Centre Drive Suite 500 Santa Ana, CA 92707

* ULTIMATE CONDITION - REGIONAL NODE 133U

* 10-YR EV JUNE 2019 ROKAMOTO

FILE NAME: EV1033UF.DAT

TIME/DATE OF STUDY: 06:42 06/12/2019

** INPUT SUMMARY **

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #1<

WATERSHED AREA = 49495.699 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE *USER ENTERED "LAG" TIME = 2.320 HOURS

VALLEY (DEVELOPED) S-GRAPH SELECTED

MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.298; LOW LOSS FRACTION = 0.746 SPECIFIED PEAK RAINFALL DEPTHS(INCH):

5-MINUTE = 0.33; 30-MINUTE = 0.64; 1-HOUR = 0.89

3-HOUR = 1.67; 6-HOUR = 2.47; 24-HOUR = 4.36

*USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:

5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422

3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940

>>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <>>>

THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO

ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).

ASSUMED REGULAR CHANNEL INFORMATION:

Date: 06/12/2019

BASEWIDTH(FT) = 200.00 CHANNEL Z = 5.00

UPSTREAM ELEVATION(FT) = 341.63; DOWNSTREAM ELEVATION(FT) = 312.40

File name: EV1033UF.RES Page 1

CHANNEL LENGTH (FT) = 3157.79 MANNING'S FACTOR = 0.030CONSTANT LOSS RATE(CFS) = 0.00 _____ FLOW PROCESS FROM NODE 810.00 TO NODE 12603.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<< ______ WATERSHED AREA = 171.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE *USER ENTERED "LAG" TIME = 0.128 HOURS VALLEY (DEVELOPED) S-GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.174; LOW LOSS FRACTION = 0.548 SPECIFIED PEAK RAINFALL DEPTHS (INCH): 5-MINUTE = 0.26; 30-MINUTE = 0.60; 1-HOUR = 0.79 3-HOUR = 1.32; 6-HOUR = 1.83; 24-HOUR = 3.06 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS: 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422 3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940************************* FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 7 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<< -----FLOW PROCESS FROM NODE 12603.00 TO NODE 12603.00 IS CODE = 6 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<> ______ FLOW PROCESS FROM NODE 12603.00 TO NODE 126.00 IS CODE = 5.2 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<-> _____ THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS (Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH (FT) = 200.00 CHANNEL Z = 5.00UPSTREAM ELEVATION(FT) = 312.40; DOWNSTREAM ELEVATION(FT) = 286.00 CHANNEL LENGTH(FT) = 3046.70 MANNING'S FACTOR = 0.030 CONSTANT LOSS RATE(CFS) = 0.00 ************************ FLOW PROCESS FROM NODE 920.00 TO NODE 126.00 IS CODE = 1 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<

Date: 06/12/2019 File name: EV1033UF.RES Page 2

```
______
 WATERSHED AREA = 553.800 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.231 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.254; LOW LOSS FRACTION = 0.750
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.26; 30-MINUTE = 0.60; 1-HOUR = 0.79
  3-HOUR = 1.32; 6-HOUR = 1.83; 24-HOUR = 3.06
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
______
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
_____
*****************
 FLOW PROCESS FROM NODE 600.00 TO NODE 126.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 185.300 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.318 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.294; LOW LOSS FRACTION = 0.920
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.26; 30-MINUTE = 0.60; 1-HOUR = 0.79
  3-HOUR = 1.32; 6-HOUR = 1.83; 24-HOUR = 3.06
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
*****************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
```

```
FLOW PROCESS FROM NODE 126.00 TO NODE 12720.50 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 200.00 CHANNEL Z = 5.00
 UPSTREAM ELEVATION(FT) = 286.00; DOWNSTREAM ELEVATION(FT) =
 CHANNEL LENGTH (FT) = 4077.05 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 430.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 315.200 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.252 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.146; LOW LOSS FRACTION = 0.406
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.26; 30-MINUTE = 0.60; 1-HOUR = 0.79
  3-HOUR = 1.32; 6-HOUR = 1.83; 24-HOUR = 3.06
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
*******************
 FLOW PROCESS FROM NODE 413.00 TO NODE 12720.50 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #3<
_____
 WATERSHED AREA = 124.300 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.175 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.138; LOW LOSS FRACTION = 0.400
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.26; 30-MINUTE = 0.60; 1-HOUR = 0.79
  3-HOUR = 1.32; 6-HOUR = 1.83; 24-HOUR = 3.06
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 7
 >>>>STREAM NUMBER 3 ADDED TO STREAM NUMBER 2<<<<
```

Date: 06/12/2019 File name: EV1033UF.RES Page 3 Date: 06/12/2019 File name: EV1033UF.RES Page 4

```
*************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 3 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 TS CODE = 7
_____
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1
_____
*****************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12720.50 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
______
************************
 FLOW PROCESS FROM NODE 12720.50 TO NODE 12741.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 200.00 CHANNEL Z = 5.00
 UPSTREAM ELEVATION(FT) = 258.00; DOWNSTREAM ELEVATION(FT) = 247.00
 CHANNEL LENGTH (FT) = 2294.66 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
*****************
 FLOW PROCESS FROM NODE 320.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
______
 WATERSHED AREA = 675.500 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.326 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.126; LOW LOSS FRACTION = 0.354
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.26; 30-MINUTE = 0.60; 1-HOUR = 0.79
  3-HOUR = 1.32; 6-HOUR = 1.83; 24-HOUR = 3.06
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
*******************
```

```
FLOW PROCESS FROM NODE 390.00 TO NODE 12741.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #4<
______
 WATERSHED AREA = 195.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.381 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.243; LOW LOSS FRACTION = 0.702
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.26; 30-MINUTE = 0.60; 1-HOUR = 0.79
  3-HOUR = 1.32; 6-HOUR = 1.83; 24-HOUR = 3.06
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
***********************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
 >>>>STREAM NUMBER 4 ADDED TO STREAM NUMBER 2<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
 >>>>STREAM NUMBER 4 CLEARED AND SET TO ZERO<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 12741.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
******************
 FLOW PROCESS FROM NODE 12741.00 TO NODE 127.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 200.00 CHANNEL Z = 5.00
 UPSTREAM ELEVATION(FT) = 247.00; DOWNSTREAM ELEVATION(FT) =
                                            240.00
 CHANNEL LENGTH(FT) = 819.00 MANNING'S FACTOR = 0.030
```

Date: 06/12/2019 File name: EV1033UF.RES Page 5 Date: 06/12/2019 File name: EV1033UF.RES Page 6

```
CONSTANT LOSS RATE (CFS) = 0.00
FLOW PROCESS FROM NODE 12710.00 TO NODE 127.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 944.100 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.446 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.296; LOW LOSS FRACTION = 0.905
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.26; 30-MINUTE = 0.60; 1-HOUR = 0.79
  3-HOUR = 1.32; 6-HOUR = 1.83; 24-HOUR = 3.06
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
*******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
******************
 FLOW PROCESS FROM NODE 127.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 200.00 CHANNEL Z = 5.00
 UPSTREAM ELEVATION(FT) = 240.00; DOWNSTREAM ELEVATION(FT) =
                                               215.00
 CHANNEL LENGTH (FT) = 3242.32
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
FLOW PROCESS FROM NODE 50220.00 TO NODE 50347.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
```

```
WATERSHED AREA = 1120.700 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.324 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.217; LOW LOSS FRACTION = 0.593
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.26; 30-MINUTE = 0.60; 1-HOUR = 0.79
  3-HOUR = 1.32; 6-HOUR = 1.83; 24-HOUR = 3.06
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
FLOW PROCESS FROM NODE 50347.00 TO NODE 12902.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #2 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 20.00 CHANNEL Z = 5.00
 UPSTREAM ELEVATION(FT) = 313.00; DOWNSTREAM ELEVATION(FT) =
                                                215.00
 CHANNEL LENGTH (FT) = 2700.00
                        MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
______
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 7
______
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<<<<
_____
******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 12902.00 IS CODE = 6
______
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<
______
*******************
 FLOW PROCESS FROM NODE 12902.00 TO NODE 129.00 IS CODE = 5.2
______
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD<
______
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH (FT) = 200.00 CHANNEL Z = 5.00
 UPSTREAM ELEVATION(FT) = 215.00; DOWNSTREAM ELEVATION(FT) =
                                                213.00
 CHANNEL LENGTH(FT) = 1663.10 MANNING'S FACTOR = 0.030
```

Date: 06/12/2019 File name: EV1033UF.RES Page 7 Date: 06/12/2019 File name: EV1033UF.RES Page 8

```
CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 50400.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 420.000 ACRES; BASEFLOW = 0.000 CFS/SOUARE-MILE
 *USER ENTERED "LAG" TIME = 0.212 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.276; LOW LOSS FRACTION = 0.837
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.26; 30-MINUTE = 0.60; 1-HOUR = 0.79
  3-HOUR = 1.32; 6-HOUR = 1.83; 24-HOUR = 3.06
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
______
FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 210.00 TO NODE 129.00 IS CODE = 1
 >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ADDED TO STREAM #2<<<<
_____
 WATERSHED AREA = 214.700 ACRES; BASEFLOW = 0.000 CFS/SQUARE-MILE
 *USER ENTERED "LAG" TIME = 0.243 HOURS
 VALLEY (DEVELOPED) S-GRAPH SELECTED
 MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = 0.126; LOW LOSS FRACTION = 0.386
 SPECIFIED PEAK RAINFALL DEPTHS (INCH):
 5-MINUTE = 0.26; 30-MINUTE = 0.60; 1-HOUR = 0.79
  3-HOUR = 1.32; 6-HOUR = 1.83; 24-HOUR = 3.06
 *USER SPECIFIED PRECIPITATION DEPTH-AREA REDUCTION FACTORS:
 5-MINUTE = 0.328; 30-MINUTE = 0.381; 1-HOUR = 0.422
  3-HOUR = 0.771; 6-HOUR = 0.897; 24-HOUR = 0.940
******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 7
 >>>>STREAM NUMBER 2 ADDED TO STREAM NUMBER 1<
_____
```

```
*************************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 6
 >>>>STREAM NUMBER 2 CLEARED AND SET TO ZERO<>
_____
*******************
 FLOW PROCESS FROM NODE 129.00 TO NODE 133.00 IS CODE = 5.2
 >>>>MODEL CHANNEL ROUTING OF STREAM #1 BY THE CONVEX METHOD <<->
_____
 THE MODIFIED C-ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO
 ROUTE THE STREAM 1 INFLOW HYDROGRAPH BY 5-MINUTE INTERVALS
 (Reference: the National Engineering Handbook, Hydrology,
 Chapter 17, page 17-52, August, 1972, U.S. Department of Commerce).
 ASSUMED REGULAR CHANNEL INFORMATION:
 BASEWIDTH(FT) = 200.00
                 CHANNEL Z = 5.00
 UPSTREAM ELEVATION(FT) = 213.00; DOWNSTREAM ELEVATION(FT) =
                                            212.00
 CHANNEL LENGTH (FT) = 1389.52 MANNING'S FACTOR = 0.030
 CONSTANT LOSS RATE(CFS) = 0.00
_____
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 11
 >>>>VIEW STREAM NUMBER 1 HYDROGRAPH<
_____
```

Date: 06/12/2019 File name: EV1033UF.RES Page 9 Date: 06/12/2019 File name: EV1033UF.RES Page 10

+	1					LTS SUMMARY
UPSTREAM I TIME(2) TO NODE # PEAK (HR)	DOWNSTREAM MAX. STORAG NODE # MODELED (A	++	PROCESS		UPSTREAM PEAK (CFS)	
10100.00	119.00	++ Subarea (UH) Added to				·
18.333 119.00	12603.00	Convex Routing:	Stream	#1	7085.9	7065.5
18.417 810.00	12603.00	Subarea (UH) Added to	Stream	#2	0.0	84.6
16.167 12603.00	12603.00	Stream #2 Added to:	Stream	#1	7065.5	7073.7
		Zero Out:				
12603.00	126.00	++ Convex Routing:			'	
	126.00	Subarea (UH) Added to	Stream	#2	0.0	167.1
		Stream #2 Added to:	Stream	#1	7054.3	7069.6
18.500 126.00		Zero Out:	Stream	#2	167.1	0.0
L6.417		Subarea (UH) Added to				
+-						
18.500						
		Zero Out:				
.8.583		Convex Routing:				
16.333	Ι΄.	Subarea (UH) Added to				
.6.250		Subarea (UH) Added to				60.6
12720.50		Stream #3 Added to:	Stream	#2	126.5	180.1
6.250 12720.50	12720.50	Zero Out:	Stream	#3	60.6	0.0
		Stream #2 Added to:	Stream	#1	7042.6	7070.3
18.583 12720.50	12720.50 	Zero Out:	Stream	#2	180.1	0.0
Dat	e: 06/12/2019	File name: EV1033UF.	RES		Pa	ge 11

		Convex Routing:				
+-		++ Subarea (UH) Added to				
16.417	1	1				
16.417	1	Subarea (UH) Added to				
12741.00 16.417	12741.00	Stream #4 Added to: Zero Out:	Stream	#2	248.9	295.7
12741.00	12741.00	Zero Out:	Stream	#4	46.8	0.0
12741.00	12741.00	Stream #2 Added to:	Stream	#1	7053.1	7107.5
+-	12741.00	++ Zero Out:			295.7	
	127.00	Convex Routing:	Stream	#1	7107.5	7100.2
18.667 12710.00	127.00	Subarea (UH) Added to	Stream	#2	0.0	159.1
16.500 127.00	127.00	Stream #2 Added to:	Stream	#1	7100.2	7111.5
	127.00	Zero Out:				
+- 127.00	12902.00	++ Convex Routing:	Stream	#1	7111.5	7102.9
50220.00	50347.00	Subarea (UH) Added to	Stream	#2	0.0	325.7
50347.00	12902.00	Convex Routing: Stream #2 Added to:	Stream	#2	325.7	317.4
12902.00 8.750	12902.00	Stream #2 Added to:	Stream	#1	7102.9	7152.8
12902.00 	12902.00	Zero Out:	Stream	#2	317.4	0.0
+-		++				
18.833 I	1	Convex Routing:				
16.250		Subarea (UH) Added to				
129.00 18.833		Stream #2 Added to:				
129.00	129.00	Zero Out:	Stream	#2	126.9	0.0
16.333	1	Subarea (UH) Added to				
Notes: 1 = INTERVAL 3 =	BASIN MODEI	++ L VOLUME EXCEEDED; 2 =				
		 +				
		,				

* AES FLOODSCx PROGRAM RESULTS SUMMARY * |INPUT FILENAME: [EV1033UF.DAT] Page: 2 of | -----+ | UPSTREAM DOWNSTREAM| |UPSTREAM DOWNSTREAM| TIME(2) TO | MAX. STORAGE| | | NODE # NODE # | HYDROLOGIC/HYDRAULIC PROCESS | PEAK (CFS) | PEAK (CFS) | PEAK (HR) | MODELED (AF) | FOOTNOTES | | 129.00 | 129.00| Stream #2 Added to: Stream #1| 7147.7 7162.1| 18.500 | | 129.00 | 129.00| Zero Out: Stream #2| 89.7 0.0| | 129.00 | 133.00 | Convex Routing: Stream #1 | 7162.1 | 7154.7 | 18.583 | | 133.00 | 133.00| View: Stream #1| 7154.7| 18.583 | 5326.00| 3 | +-----------+ |Notes: 1 = BASIN MODEL VOLUME EXCEEDED; 2 = TIME IS AT END OF 5-MINUTE UNIT 3 = RUNOFF ESTIMATES DO NOT EXTEND PAST 2 DAYS AFTER THE PEAK DAY OF THE DESIGN STORM

END OF FLOODSCx ROUTING ANALYSIS

Date: 06/12/2019 File name: EV1033UF.RES Page 13 Date: 06/12/2019 File name: EV1033UF.RES Page 14